

Congress of the European Society for Evolutionary Biology

Congress Program & Information August 10 - 14, 2015 Lausanne, Switzerland

unil.ch/eseb2015 @eseb2015 #eseb15

11 ...: 0

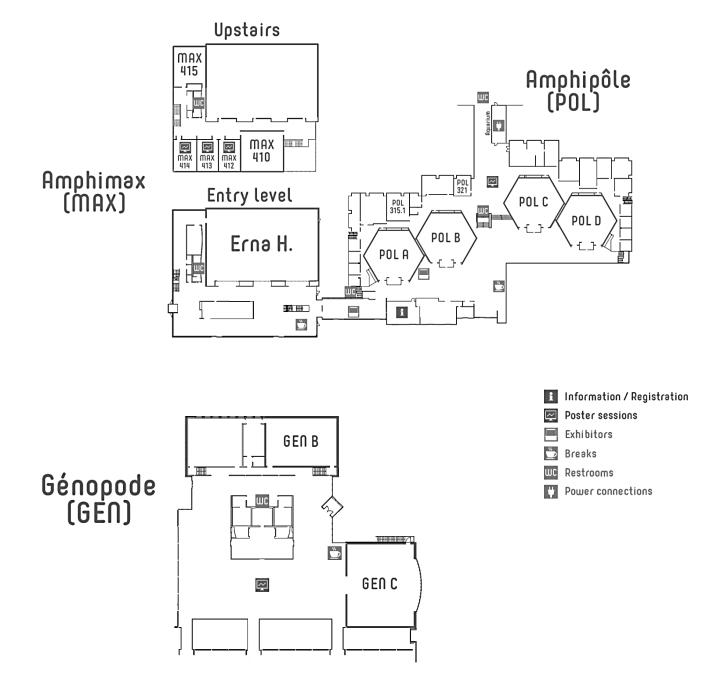
UNIL | Université de Lausanne Département d'écologie et évolution

UNIL campus overview

The congress will take place in three main buildings of UNIL, the **Amphipôle (POL)**, the **Amphimax (MAX)**, and the **Génopode (GEN)**. Access to this section of campus is easiest via the M1 metro stop **UNIL-Sorge.**

Lunch throughout the conference will be served at the **Unithèque.** The conference dinner on the last evening of the meeting will also be held at the Unithèque.

Childcare is provided by La Croq'cinelle in the **Anthropole**, a 10 minute walk from the buildings where sessions will occur. Access to childcare from Lausanne city is easiest via the M1 metro stop **UNIL-Dorigny**.


Primary buildings

Participants may pick up their conference bags and badges at the welcome reception or anytime thereafter in the Amphipôle in **POL-303 – Anthropos Café**.

Opening remarks, plenary sessions, the presidential address, and John Maynard Smith prize talks will take place in the **Auditorium Erna Hamburger** in the Amphimax. Concurrent sessions will take place in four rooms in the Amphipôle (POL-A, POL-B, POL-C, and POL-D), two rooms in the Amphimax (MAX-410 and MAX-415), and two rooms in the Génopode (GEN-B and GEN-C). Coffee breaks will be held in all three buildings.

Poster sessions will take place in POL-300, GEN-2000, MAX-412, MAX-413, and MAX-414.

Conference attendees can access the internet throughout campus via Wi-Fi (guest-unil network, password eseb2015) and can plug in their laptops (adapter required) in POL-342.6, the **Aquarium**.

Key information

Travel and transport

ESEB 2015 will take place at the Dorigny campus of the University of Lausanne (UNIL), with some events occurring in the city of Lausanne. There are regular trains between Lausanne and both the Geneva and Zurich airports. Departure and arrival times can be found on <u>www.sbb.ch/en</u>.

The UNIL campus is located west of Lausanne. The easiest way to reach the campus from Lausanne-Flon in the city center is to take the metro line M1, direction Renens Gare, and stop at UNIL-Sorge. The M2 line runs between Ouchy in the south, on the shore of Lake Geneva, and Les Croisettes to the north. The two metro lines meet at Lausanne-Flon. Transport on the M1 and M2, as well as all of the buses in Lausanne, is free for all Congress participants with a personal transport card provided by the hotels at check-in. Without this transportation card, a single ticket will cost CHF 3.60 and a day pass (carte journalière) costs CHF 9.00. For those Congress participants who will drive to the venue, parking on the campus is free throughout the meeting.

More information about accommodation, entertainment, and transport is available on the website of Lausanne Tourisme (<u>http://www.lausanne-tourisme.ch/en/</u>). A map of the city is provided in your conference bag and the inside back cover of this program.

Registration and information desk

The congress bag, T-shirts, and any general information can be obtained at the Amphipôle in POL-303 – Anthropos Café, beginning Sunday, August 9th during the welcome reception. The conference bag includes this booklet, a campus and building map, a city map, lunch vouchers, and other material from our sponsors.

Staff

Congress staff will be easily identified by their orange ESEB 2015 T-shirts and will be able to answer any questions about the venue.

Internet

Conference attendees can access the internet throughout campus via Wi-Fi (guest-unil network, password eseb2015) and can plug in their laptops in POL-342.6, the Aquarium. Attendees without Swiss power plugs will need an adapter.

Breakfast, breaks, and lunch

Complimentary breakfast (coffee and croissant) will be available daily at the Amphimax cafeteria (MAX-301) from 8:00-8:50. Coffee will be available during breaks between sessions in all three of the primary buildings. Lunch will be available only at the Unithèque, and will consist of a choice among 5 menus, with vegetarian options. Tap water will be available; no bottled beverage will be included

Talk and poster abstracts

The complete schedule of talks and posters, along with abstracts, is available online at <u>http://wp.unil.ch/eseb2015/</u> and also via the Guidebook application (<u>https://guidebook.com/g/ESEB2015/</u>).

Talks

Invited talks will be 27 minutes long and normal contributed talks will be 17 minutes long, including discussion. An additional 3 minutes is provided to change rooms.

It will not be possible to connect your own laptop for the presentation. Instead, we have asked you to upload your slides on a cloud-based system prior to the conference (a personal link should have been sent to you by e-mail). It is possible to modify your presentation at any time, but we would like your final version to be uploaded the day before your talk at the latest. We can accommodate Powerpoint or Keynote presentations, but we recommend that you also upload a PDF version of your presentation in case of compatibility issues. If you have any problems uploading your presentation, send an e-mail to eseb2015@unil.ch, with subject "presentation upload". There will be an opportunity to check your presentation on site before your talk in POL-321. All session rooms will be equipped with Mac laptops.

Posters

There will be two poster sessions (A and B) and three locations: Amphimax (MAX-412, MAX-413, MAX-414), Amphipôle (POL-300) and Genopode (GEN-2000).

Session A posters will be presented on Monday, August 10th, 17:40-19:40. Session B posters will be presented on Thursday, August 13th, 17:40-19:40. Both sessions will be combined with an apero: authors will be asked to stand in front of their poster with drinks (provided) and fill the glasses of attendees.

Session A posters will be displayed from Monday until Wednesday morning. You may place your poster during the Welcome reception (poster rooms will be open from 18:00 to 21:00). Retrieve your poster by Wednesday 11:30 at the latest.

Session B posters will be displayed from Wednesday afternoon until Friday afternoon. You may place your poster from Wednesday 12:30. Retrieve your poster by Friday 18:00 at the latest.

Wooden panels and pins will be provided for you to pin your poster. Panels will be numbered; each can accommodate two posters on each side (i.e. four in total). The maximal size for posters is 120 cm height and 90 cm width (A0 size vertical posters fit well).

Childcare

Free childcare will be provided on the campus for children 0 – 60 months old, throughout the conference (10th-14th of August, 8:00 to 18:00). Childcare is provided by La Croq'cinelle, part of the University childcard system, in the Anthropole. Access to the Anthropole is easiest via the M1 metro stop **UNIL-Dorigny**.

Contact info eseb2015@unil.ch ESEB help desk +41 (0)21 692 23 44 Emergency +41 (0)21 692 20 00 Taxi services +41 (0)844 814 814

+41 (0)844 810 810

Plenary lectures (Erna Hamburger Auditorium)

Monday, August 10th at 9:10 **Judith Mank** University College London "The genomic basis of sexual dimorphism" **Jane Reid** Tuesday, August 11th at 9:00 University of Aberdeen "Dissecting the evolutionary ecology of reproductive strategies in the wild" **Kevin Foster** Wednesday, August 12th at 9:00 University of Oxford "Social evolution in microbes: from model systems to the microbiome" Dan Tawfik Thursday, August 13th at 9:00 Weizmann Institute of Science "How do proteins evolve?" Hopi Hoekstra Friday, August 14th at 9:00 Harvard University "Digging for genes that affect behavior" Presidential address (Erna Hamburger Auditorium) Laurent Keller Friday, August 14th at 14:45 University of Lausanne "Supergenes, sex, and sociality"

John Maynard Smith Prize 2014(Erna Hamburger Auditorium)Laurie StevisonFriday, August 14th at 15:30Auburn University"The timescale of recombination rate evolution in great apes"

John Maynard Smith Prize 2015(Erna Hamburger Auditorium)Matthew HartfieldFriday, August 14th at 16:40University of Toronto"Mathematical adventures in sex and disease evolution"

Satellite activities

Meet the DFG (Tuesday, August 11th at 13:40 in MAX-415) Christoph Limbach, Lutz Becks, and Susanne Foitzik

The German Research Foundation (DFG) – Funding programs for early career researchers. This talk is addressed to researchers at an early stage of their scientific careers (e.g. advanced PhD students, postdocs, junior research group leaders). It aims to introduce the German Research Foundation (DFG) as the largest research funding organization in Germany and DFG's funding programs for early career researchers from Germany and abroad. Application and review procedures will be presented and recent developments discussed. Experienced scientists will share their experiences relating to their scientific careers and disclose some tips and tricks for grant writing. No registration required!

Meet the Editors (Tuesday, August 11th at 17:40 in POL-A)

This workshop will offer participants the possibility of interacting with the Editors of a few selected leading journals, including Mike Ritchie (J Evol Biol), Spencer Barrett (Proc R Soc B), Loren Riesenberg (Mol Ecol), Dries Bonte (Oikos), Christopher Foote (BMC Evol Biol), Roland Roberts (PLoS Biology), Laura Zahn (Science), Vera Domingues (Nature Com) and Patrick Goymer (Nature).

Meet the NSF (Thursday, August 13th at 13:40 in MAX-415) George Gilchrist and Leslie Rissler

The National Science Foundation (NSF) — US NSF supports basic research in all areas of science. We will discuss funding opportunities in the Biological Sciences Directorate (BIO), the process of applying for funding, and the characteristics of successful proposals. Special attention will be given to international programs and CAREER awards for early stage scientists. Come with your questions, no registration required!

ESEB members meeting (Friday, August 14th at 13:40 in Erna Hamburger)

We invite all ESEB members to our members' meeting in the plenary hall Erna Hamburger on Friday the 14th of August at 13:40! The members' meeting discusses important issues for our society, this year including foundation of a new journal (Evolution Letters), information on new exciting ESEB initiatives and awards, decision on future congress locations, the society's budget, and also news on our existing journal (Journal of Evolutionary Biology). So do not miss it and join us for the members' meeting!

ESEB Business Meetings

JEB Editorial Board Meeting (Sunday, August 9th, 9:00-12:00 in the meeting room of Hotel Alpha-Palmiers, Lausanne)

ESEB Steering Committee Meeting (Sunday, August 9th, 12:00-18:00 in the meeting room of Hotel Alpha-Palmiers, Lausanne)

ESEB Council Meeting (Monday, August 10th, 13:00-14:40, in POL 315.1)

Social events and excursions

Welcome reception

The welcome reception will take place on campus, in front of the Amphimax. Food and drinks will be served on Sunday, August 9th, from 17:00 to 22:00. You will need to check in at the registration desk beforehand (POL-303 – Anthropos Café) and get your personal badge in order to be allowed to attend. You will also be able to obtain your conference bag, and to pin your poster for Session A.

Congress bar

A conference bar will be available Monday-Thursday evenings from 20:00 until 24:00 in the Casino de Montbenon, in the center of the city of Lausanne.

Gala dinner

The conference dinner will be held on the Dorigny campus of the University of Lausanne at the Unithèque on Friday, August 14th from 19:00. Live music will begin at 21:00 and festivities will continue until 2:00.

Excursions

Wednesday afternoon will be free to allow attendees to explore the Lausanne region. We have proposed three excursions organised by Lausanne Tourisme. Check the website for additional details and up to date information on the trips. Packed lunches will be provided.

- Lausanne city walking tour and wine-tasting excursion to Lavaux Meet 13:45 at Place de la Riponne, in front of the Tourist Office "Palais de Rumine" (metro stop Riponne, M2 line). Return by 19:40. Packed lunches will be provided. 70 CHF

Public cruise with the "Montreux" Belle Epoque paddle steamer
 Meet at 13:45 at dock number 3, Lausanne-Ouchy (metro stop Lausanne-Ouchy, M2 line). Return by 17:45. Packed lunches will be provided.
 50 CHF

- Rochers-de-Naye, 2042 m. altitude

Meet 14:00 at Lausanne train station. Return by 23:14. Packed lunches will be provided.

125 CHF

<u>Outreach</u>

We are excited to announce a series of events at ESEB 2015 that are open to the general public.

- A **workshop on "Actively learning evolution"**: Sunday 9th August (full day). We will explore methods and resources available for the enquiry-based teaching of evolution. Speakers will present effective teaching methods, the latest research discoveries in the field of evolution and participants will take part in hands-on activities that they can take back to their classroom/lecture.

Tweet chats (Tuesday, August 11th 18:00-19:00)
 Two parallel discussions, one in French and the other in English, with science-loving tweeters about the evolution of sex. To participate, tweet to:
 @LCE_fr (for the discussion in French)
 @LCE_en (for the discussion in English)

Or, simply follow the discussion: #evosexfr (French) #evosexen (English)

- **Questions of the day**: questions collected from the public about evolutionary biology related topics will be answered by ESEB participants before the congress and posted to our Facebook page in daily installments throughout the conference.

- **Scientist speed dating** (full): a series of short discussions between scientists and the public in an informal and relaxed environment at the bar of Casino Montbenon on Thursday, August 13th at 20:00.

If you want to collaborate or learn more about these outreach projects, please contact us at <u>outreach2015eseb@gmail.com</u>. You can also follow our updates on our web page <u>http://outreachateseb2015.tumblr.com/</u> or on our Facebook page <u>https://www.facebook.com/LCE15</u>.

Sex and sexes

- Ecology and the evolution of sex. Organizers: Lutz Becks, Hanna Koch Invited speakers: Levi Morran and Tanja Schwander
 What is new in the study of sex allocation?
- 2. What is new in the study of sex allocation? Organizers: Bram Kuijper, Sara Magalhaes Invited speakers: Lukas Schärer and Lisa Schwanz
- 3. The evolution of sex chromosomes. Organizers: Susana Coelho, Nicolas Perrin Invited speakers: Doris Bachtrog and James Umen
- **4. Evolutionary consequences of sexually antagonistic selection.** Organizers: Brian Hollis, Göran Arnqvist Invited speakers: Stephen Chenoweth and William Rice
- 5. Novel insights in the genetics of sex-specific variation. Organizers: Elina Immonen, Holger Schielzeth Invited speakers: Daphne Fairbairn and Tim Connallon

Social interactions

- 6. Mating system evolution: unifying theory and test. Organizers: Greta Bocedi, Francisco Garcia-Gonzalez Invited speakers: Suzanne Alonzo, Aneil Agrawal
- 7. Social evolution and sexual conflict. Organizers: Tommaso Pizzari, Jay Biernaskie Invited speakers: Andy Gardner and Tracey Chapman
- 8. Cooperation without kinship: from genomes to mutualisms. Organizers: Arvid Ågren, Kevin Foster Invited speakers: Justin Blumenstiel and Toby Kiers
- 9. Evolutionary ecology of cooperation: theory and experiment. Organizers: Dusan Misevic, Sam Brown Invited speakers: Ashleigh Griffin and Jeff Gore

Interspecific interactions

10. Adaptation in heterogeneous environments: insights from host-parasite systems. Organizers: Nicolas Rode, Florence Débarre

Invited speakers: Anna-Liisa Laine and Alex Hall

11. Host defence in a parasitized world: selection, evolution and the maintenance of variation.

Organizers: Barbara Tschirren, Lars Råberg Invited speakers: Andrea L. Graham and Brian P. Lazzaro

12. Next-generation phylodynamics.

Organizers: Tanja Stadler, Alexei Drummond

Invited speakers: Gabriel Leventhal and Katja Koelle

13. Evolutionary analysis of ecological communities.

Organizers: Brent Emerson, Andres Baselga Invited speakers: Mike Hickerson and Catherine Graham

14. Experimental evolution and ecology of (microbial and other) ecosystems. Organizers: Sijmen Schoustra, Susanne Kraemer Invited speakers: Susanna Remold and Tom Bell

Genome evolution

15. Evolution of genomes.

Organizers: Alexandre Reymond, Laurent Keller Invited speakers: Evan Eichler and Lucia Carbone

16. Evolutionary consequences of selfish genetic elements.

Organizers: Tom Price, Anna Lindholm Invited speakers: Gerry Wilkinson and Laura Ross

17. Polyploid evolution: Integrating ecological and genomic studies.

Organizers: Mario Vallejo-Marin, Richard Buggs

Invited speakers: Christian Parisod and Andrea Harper

18. How to identify and test the loci and alleles underlying adaptation? Organizers: Paul Schmidt, Thomas Flatt Invited speakers: Felicity Jones and Alistair McGregor

19. Ignoramus et ignorabimus? – How much genome scans can and should tell us about evolution.

Organizers: Daniel Berner, Marius Roesti

Invited speakers: Matthew Rockman and Rasmus Nielsen

20. Genomics of local adaptation.

Organizers: Santiago Gonzalez-Martinez, Martin Lascoux Invited speakers: Outi Savolainen and Thomas Mitchell-Olds

Plasticity, epigenetics and behaviour

21. The evolution of phenotypic plasticity within and across generations. Organizers: Matthew Walsh, Steve Munch Invited speakers: Cameron Ghalambor and Eva Jablonka

22. Evolutionary epigenetics: switching from models to the field. Organizers: Conchita Alonso, Ovidiu Paun Invited speakers: Koen Verhoeven and Annalisa Varriale

23. Emerging 'models' in evolutionary and ecological neurobiology. Organizers: Stephen Montgomery, Alison Wright Invited speakers: Katie Peichel and Niklas Kolm

24. Evolution of behavioral variation. Organizers: Barbara Feldmeyer, Susanne Foitzik Invited speakers: Seirian Sumner and Jürgen Gadau

Microbe evolution

25. Groups versus individuals: levels of selection in microbial systems. Organizers: Christian Kost, Martin Ackermann

Invited speakers: Martin Polz and Thierry Emonet

26. Real-time bacterial evolution in vivo and in vitro. Organizers: Daniel Wilson, Craig MacLean Invited speakers: Sebastien Gagneux and Rasmus Lykke Marvig

Selection / adaptation

27. Ecology and evolution of floral signals.

Organizers: Florian Schiestl, Martin von Arx Invited speakers: Brian Smith and Santiago Benitez-Vieyra

28. Variation in natural selection: patterns, causes, and consequences. Organizers: Anne Charmantier, Michael Morrissey Invited speakers: Christina Caruso and Luis-Miguel Chevin

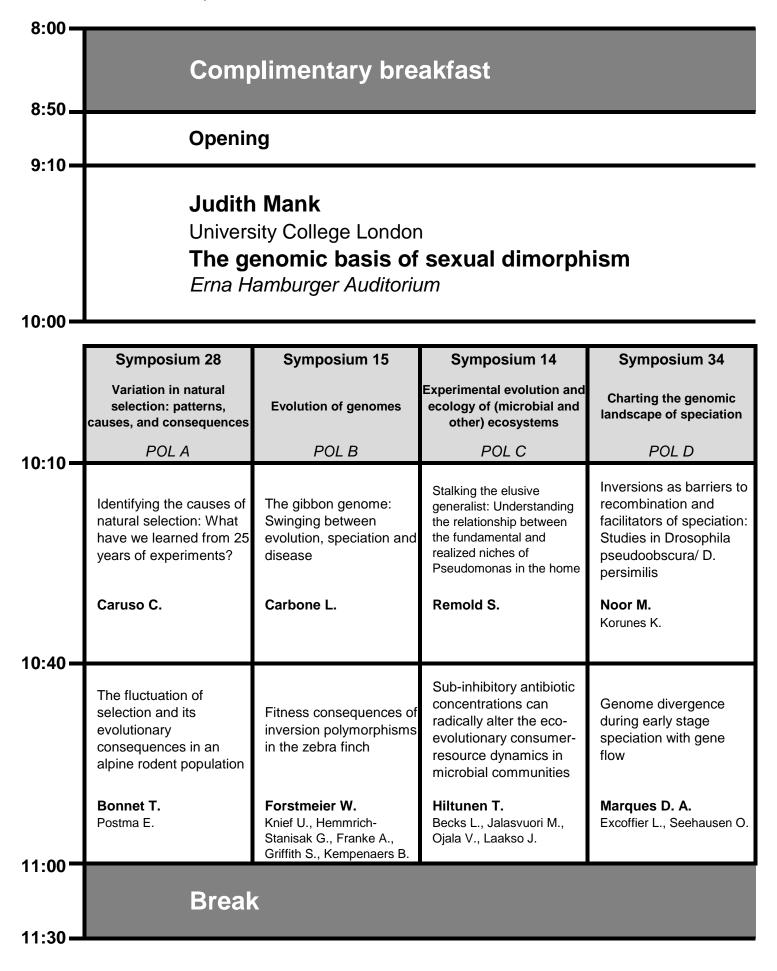
29. The evolution and ecology of trait loss and dependency.

Organizers: Jacintha Ellers, Fabrice Vavre Invited speakers: Sonia Pascoal and Amparo Latorre

- **30. Protein evolution: structural and functional perspective.** Organizers: Romain Studer, Maria Anisimova Invited speakers: Dan S. Tawfik and Richard A. Goldstein
- **31. Melanism: macrophysiology to molecules.** Organizers: Subhash Rajpurohit, Paul Schmidt Invited speakers: Alexandre Roulin and Aya Takahashi
- **32. Forecasting eco-evolutionary responses to global changes.** Organizers: Frédéric Guillaume, Ophélie Ronce Invited speakers: Katja Schiffers and Liana Burghardt

Speciation

- **33. The molecular basis of adaptation and ecological speciation.** Organizers: Philipp Schlüter, Shuqing Xu Invited speakers: Mark Rausher and Beverley Glover
- **34. Charting the genomic landscape of speciation.** Organizers: Anja Marie Westram, Mark Ravinet Invited speakers: Nicolas Bierne and Mohamed Noor


Open symposium

35. Open symposium.

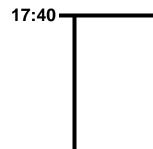
Organizers: John Pannell, Laurent Keller

Program summary

Sunday 9	Monday 10	Tuesday 11	Wednesday 12	Thursday 13	Friday 14	
	breakfast					
		ŀ	keynote lectures	5		
	symposia # 15	symposia # 38	symposia # 27	symposia # 49	symposia # 12 16	
	6 13	11 20	11 20	10 18	17 19	
	14 15	21 28	21 29	24 26	22 23	
	28 34	30 33	33 35	32 35	31 35	
		Meet the DFG	lunch	Meet the NSF	ESEB members	
	symposia # 15 613	symposia # 3 8 11 20		symposia # 4 9 10 18	Presidential address	
	14 15	21 27		24 25	JMS prizes	
	28 34	28 33 35		32 35	Closing	
	20 54	20 33 33		52 55	ceremony	
welcome reception	poster session A	meet the editors		poster session B	conference	
					dinner	

Symposium 6	Symposium 13	Symposium 1	Symposium 5
Mating system evolution: unifying theory and test	Evolutionary analysis of ecological communities	Ecology and the Evolution of Sex	Novel insights in the genetics of sex-specific variation
MAX 410	MAX 415	GEN C	GEN B
The social side of sex: Male/female coevolution and social plasticity affect reproductive patterns Alonzo S.	Linking patterns and processes across scales: A case study with Neotropical hummingbirds Graham C.	On the maintenance of sex in natural populations Schwander T.	How important are sex- linkage and non-additive genetic variation in the variance structure of sexually dimorphic traits? Fairbairn D.
Promiscuity modulates the male Bateman gradient in Drosophila melanogaster	Using low coverage multispecies genomic data to reconstruct the assembly of a widespread insect community	Evolutionary advantage of sexual algal prey exposed to predation	X-linkage of sex-specific genetic variance revealed using G-matrix analyses and a novel laboratory technique
Morimoto J. McDonald G. C., Pizzari T., Wigby S.	Bunnefeld L. Hearn J., Lohse K., G.N. Stone	Koch H. Wagner S., Becks L.	Griffin R. Schielzeth H., Friberg U.

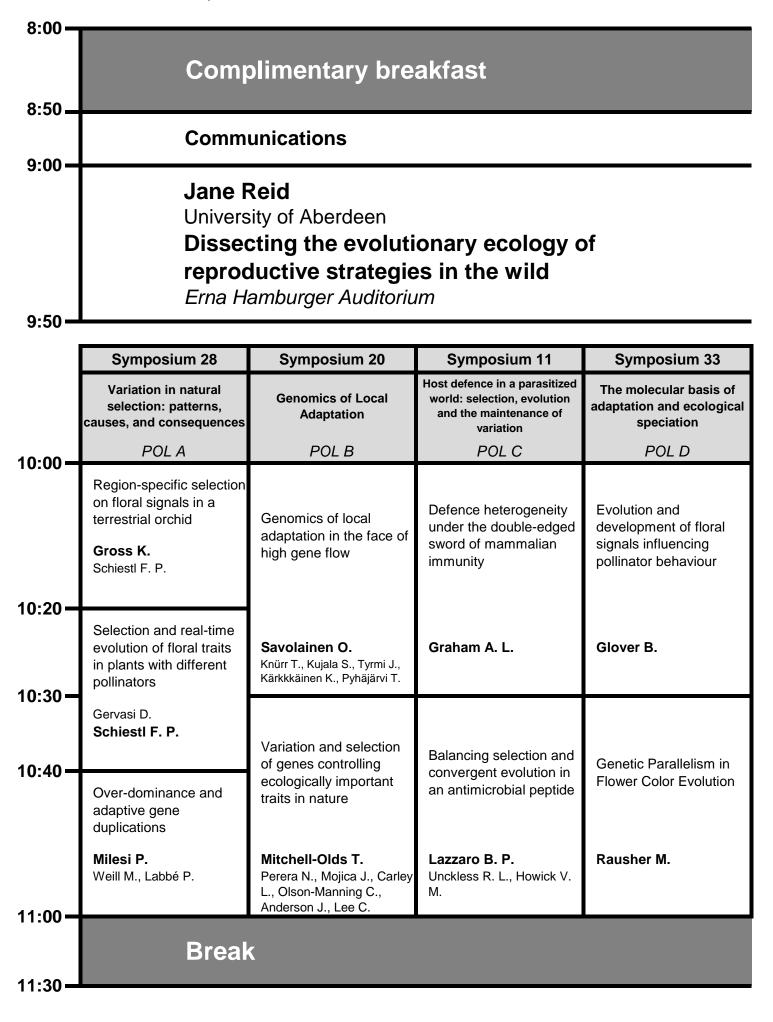
	Symposium 28	Symposium 15	Symposium 14	Symposium 34
	Variation in natural selection: patterns, causes, and consequences	Evolution of genomes	Experimental evolution and ecology of (microbial and other) ecosystems	Charting the genomic landscape of speciation
44-20	POL A	POL B	POL C	POL D
11:30 —	Measuring fluctuating phenotypic selection	Human Evolution by Segmental Duplication	Experimental evolution of bacteria in the laboratory and in the wild	The multifarious histories charting the multifaceted landscapes of genomic differentiation
	Chevin L. Visser M., Tufto J.	Eichler E.	Bell T.	Bierne N.
12:00 —	The spatial scale of local adaptation	Parental investment predicts genetic diversity of animal species	Bacterial biodiversity: The role of spatial structure and competition within species	Evolution of genome differentiation across the speciation continuum: From patterns to mechanisms to regions related to species- specific evolution
12:20 —	Hadfield J. Phillimore A.	Romiguier J. Galtier N.	Leinweber A. Kümmerli R.	Burri R. Nater A., Kawakami T., Mugal C.F., Olason P. I., Smeds L., Suh A., Ludovic D., Ellegren H.
	Detecting changing selection intensities from time-sampled data	A genomic study of the contribution of DNA methylation to regulatory evolution in primates	Experimental coevolution and the effects of parasite species co-infection on parasite virulence and fitness	Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation
12:40 —	Shim H. Laurent S., Foll M., Jensen J.	Roux J. Hernando-Herraez I., Banovich N., Garcia-Perez R., Pritchard J., Marques-Bonet T., Gilad Y.	Ford S. King K.	Lohse K. Clarke M., Ritchie M. G., Etges W.J.
12.70		Recombination and GC- biased gene conversion shape genome evolution in the honeybee (Apis mellifera)	Pathogen adaptation to individual and social host defences in ants	Traversing the micro-evolution to macro-evolution boundary in Caenorhabditis nematodes with full-genome population genomics, crosses, and hybrid phenotypes
13:00 —		Wallberg A. Glémin S., Webster M. T.	Stock M. Grasse A. V., Cremer S.	Cutter A.
	Lunc	h		
14:45 —				


Symposium 6	Symposium 13	Symposium 1	Symposium 5
Mating system evolution: unifying theory and test	Evolutionary analysis of ecological communities	Ecology and the Evolution of Sex	Novel insights in the genetics of sex-specific variation
MAX 410	MAX 415	GEN C	GEN B
Coalescence and genomics with linked selection in systems with bi- and uniparental reproduction: Contrasting partial asexuality and selfing Agrawal A.	Comparative population genomics for community- scale demographic inferences Hickerson M.	Invasion of the selfers! Evolutionary ecology and the maintenance of outcrossing Morran L.	The geography of sex- specific selection, local adaptation, and sexual dimorphism Connallon T.
Genetics of attractiveness and mate choice in Drosophila melanogaster Arbuthnott D. Promislow D.	Ecological correlation reinforcement facilitates collective community behaviours without group selection Power D. Watson R., Száthmary E.	Fitness consequences of parasite-mediated selection on sexual reproduction in a natural population Gibson A. Delph L., Lively C.	Transcriptome-wide effects of male sexual selection on the fate of new mutations Collet J. M. Blows M. W., McGuigan K.
Does sexual selection augment or oppose natural selection? Holman L.	Ecological novelty may facilitate homoploid hybrid speciation in cichlid fish Selz O.M. Seehausen O.	Brachionus calyciflorus evolves higher levels of sex with more loci under selection Luijckx P. Ho E., Gasim M., Yanchus C., Chen S., Kim Y., Agrawal A.	Red males revealed: A cytochrome P450 gene cluster controls production of derived red ketocarotenoids in the zebra finch bill Mundy N. Stapley J., Bennison C., Burke T., Birkhead T., Andersson S., Slate J.
Sexually transmitted infection and the evolution of serial monogamy McLeod D. Day T.			

	Symposium 28	Symposium 15	Symposium 14	Symposium 34
	Variation in natural selection: patterns, causes, and consequences	Evolution of genomes	Experimental evolution and ecology of (microbial and other) ecosystems	Charting the genomic landscape of speciation
14:45—	POL A	POL B	POL C	POL D
14.45	Evoltution by r- and K- selection in fluctuating environments	Adaptive genome remodeling by massive changes in gene content and gene transfers across gene fungi	The effects of increasing parasite diversity on the evolution of resistance/infectivity and host/parasite growth	Recombination rate variation and differential gene flow shape the genomic landscape of speciation in sea bass
45.05	Saether B. Engen S., Visser M. E., Grøtan V.	Branca A. Ropars J., Rodriguez de la Vega R., López-Villavicencio M., Gouzy J., Sallet E., Dumas E., Dupont J., Giraud T.	Betts A. Maclean C., King K.	Gagnaire P. Bierne N., Bonhomme F.
15:05 —	Maintenance of polymorphism through small-scale spatial variation in selection	Transcriptome comparisons within a species complex: Half a million years is enough to remove half of the genetic diversity in coding sequences, but not enough for morphological differentiation. Influence of life history	Evolution of competitive ability in multispecies bacterial communities is sensitive to community composition	The repeatability of genomic architecture in a homoploid hybrid species
15:25 —	Lange R. Monro K., Marshall D.	Chenuil A. Galtier N., Abi-Rached L., Weber A.	Ketola T. Mikonranta L., Laakso J., Mappes J.	Runemark A. Trier C. N., Eroukhmanoff F., Hermansen J.S., Elgvin T. O., Saetre G.
13.23	Variation in selection in a wild insect population	Evolutionary dynamics of bacterial pan- genomes	The role of dispersal and interspecific competition on local adaptation	The genomic landscape of the speciation continuum in the killer whale
15:45	Tregenza T. Rodríguez-Muñoz R., Fisher D., Slate J., Skicko I., Kendall S., Liu X., Hopwood P., Rodríguez del Valle C.	Charlesworth J. Wilson D., Crook D.	Bonte D. Bisschop K., Etienne R. S., Bonte D.	Foote A. D. Vijay N., Ávila-Arcos M. C., Fumagalli M., Korneliussen T. Sand, Martin M. D., Morin P. A., Gilbert M. Thomas P., Wolf J. B.W.
16:15 -	Break	(

Symposium 6	Symposium 13	Symposium 1	Symposium 5
Mating system evolution: unifying theory and test	Evolutionary analysis of ecological communities	Ecology and the Evolution of Sex	Novel insights in the genetics of sex-specific variation
MAX 410	MAX 415	GEN C	GEN B
Bias in the Heritability of Preference and its Potential Impact on the Evolution of Mate Choice	The role of hybridization in the evolution of alpine Coenonympha butterflies	Diversity and the maintenance of sex by parasites	Sexually antagonistic effects on development and transcriptomic maturity in Drosophila
Roff D. Fairbairn D.	Capblancq T. Després L., Mavarez J.	Ashby B. King K.	Hollis B. Keller L., Kawecki T. J.
Heritability of heterozygosity leads to transgenerational effects of heterozygosity and inbreeding	Nestedness and turnover in the genetic diversity of marine species across the Indo- Pacific Ocean	Geographical parthenogenesis in Hieracium alpinum (Asteraceae): Molecular evidence for multiple origin of asexuality and replacement of sexual diploids by asexual triploids	Sex-specific effects of serotonin on behavior and gene expression in a stalk-eyed fly
Nietlisbach P. Keller L., Postma E.	Liggins L. Crandall E. D., Aguirre J. David, Gaither M.R., Bird C. E., Toonen R. J., DIPnet members, Riginos C.	Mráz P. Hartmann M., Zdvořák P., Rioux D., Choler P., Chrtek J., Taberlet P.	Grace J. Bubak A., Watt M., Renner K., Swallow J.
Genetic compatibility underlies benefits of mate choice in an external fertilizer	Specificity of the microbiome: Insights from Daphnia hosts	Interactions between genetic and ecological effects on the evolution of life cycles	Convergent evolution of female-limited color dimorphism in Drosophila
Aguirre J.D. Blows M. W., Marshall D. J.	Pichon S. Mariadassou M., Ebert D.	Rescan M. Lenormand T., Roze D.	Yassin A. Bastide H., Lack J., David J., Pool J.

	Symposium 28	Symposium 15	Symposium 14	Symposium 34
	Variation in natural selection: patterns, causes, and consequences	Evolution of genomes	Experimental evolution and ecology of (microbial and other) ecosystems	Charting the genomic landscape of speciation
40.45	POL A	POL B	POL C	POL D
16:15 —	A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments	Avian phylogenomic analyses revealed the macroevolution patterns of bird genomes	Rescued by evolution - problems ahead: Adapting to fluctuating environment increases invasiveness	What causes "genomic islands" of excess Fst ?
	Svardal H. Rüffler C. , Hermisson J.	Zhang G.	Saarinen K.	Barton N. Tavares H., Field D.
16:35 —				
10.00	Spatio-temporal heterogeneity of natural selection in the wild: An experimental approach towards understanding life history adaptation of Arabidopsis thaliana	Fixation of gene duplications due to beneficial increases in gene expression	Life after death: The fate of the microbiota of a dying host	Recombination rate and the chromosomal distribution of gene flow between species of Heliconius buterflies
40.55	Exposito-Alonso M. Brennan A., Alonso-Blanco C., Pico F.X.	Cardoso-Moreira M. Arguello R. J., Riccardi D., Gottipati S., Harshman L. G., Grenier J. K., Clark A.	Preiswerk D. Walser J., Ebert D.	Martin S. Davey J., Jiggins C.
16:55 —	Tempo does not infer mode in evolution	Adaptive Evolution of a Clinal Inversion Polymorphism in Drosophila melanogaster	The effect of interspecific competition on the evolutionary response of photosynthetic algae to elevated CO2	Functional speciation genomics of the Anopheles gambiae complex
47.45	Voje K.	Kapun M. Schmidt C., Goudet J., Schmidt P., Flatt T.	Lawrence D. Collins S.	Tripet F. Aboagye-Antwi F., Alhafez N., Niang A., Weedall G., Paton D., Brothwood J., Kandola S., Diabate A.
17:15 —	Consequences of multiple-scale variation in selection on microgeographic adaptation	Whole genome sequencing reveals an antibiotic resistance determinant driving rapid evolutionary change via several mechanisms in a multi- species outbreak	The interaction of Saccharomyces paradoxus with its natural competitors on oak bark	Ant hybrids reveal genomic features underlying speciation
17:35 —	Cubry P. Oddou-Muratorio S., Scotti I., Lefèvre F.	Sheppard A. Stoesser N., Giess A., Sebra R., Kasarskis A., Peto T., Crook D., Sifri C., Mathers A.	Kowallik V. Greig D.	Kulmuni J. Dhaygude K., Pamilo P., Butlin R.



Poster session A

19:40-

Symposium 6	Symposium 13	Symposium 1	Symposium 5
Mating system evolution: unifying theory and test	Evolutionary analysis of ecological communities	Ecology and the Evolution of Sex	Novel insights in the genetics of sex-specific variation
MAX 410	MAX 415	GEN C	GEN B
The structure of the mating network as a framework to understand mating systems: Theory and tests	From neutral theory to competition-dispersal trade- off: Dispersal polymorphism effects on species diversity patterns	Evidence for inter- individual genetic transfers among the genus Adineta vaga	Trans-regulation of sexually discordant expression from the Drosophila melanogaster X chromosome
McDonald G. Spurgin L., Fairfield E., Richardson D., Pizzari T.	Laroche F. Jarne P. , Perrot T., Massol F.	Debortoli N. Li X., Tang C. Q., Hespeels B., Fontaneto D., Flot J., Van Doninck K.	Stocks M. Dean R., Rogell B., Friberg U.
The breakdown of self- incompatibility during a range expansion	Evolution of ecological communities through the lens of an island chronosequence	The Red Queen and the bdelloid rotifers: Host- parasite interactions in the long-term absence of sex	Sexual selection drives evolution and rapid turnover of male-biased genes
Encinas-Viso F. Pannell J., Young A.	Gillespie R. Rominger A., Lim J., Valdavinos F., Harte J., Goodman K., Gruner D., Shaw K., Price D.	Wilson C. Kriezis A., Penny T., Potter J., Barraclough T.	Harrison P. W. Wright A. E., Zimmer F., Dean R., Montgomery S. H., Mank J. E.
The intersection of the mating system and strong selection: Herbicide resistance is related to increased inbreeding in Ipomoea purpurea, the common morning glory		No evidence for parasites maintaining sex in natural stick insect populations	
Baucom R. Kuester A., Chang S.		Larose C. Schwander T.	
Inherited Inbreeding: Evidence of sex-specific, additive genetic variances in the degree of inbreeding Wolak M.			
Nietlisbach P., Keller L., Arcese P., Reid J.			

TUESDAY, AUGUST 11TH

Symposium 21	Symposium 30	Symposium 3	Symposium 8
The evolution of phenotypic plasticity within and across generations	Protein evolution: structural and functional perspective	The Evolution of Sex Chromosomes	Cooperation without kinship: from genomes to mutualisms
MAX 410	MAX 415	GEN C	GEN B
The Evolution of Epigenetic Inheritance	The thin line between conformational freedom and anarchy - negative epistasis and evolvability in TEM-1 beta- lactamase	Beetles, Birds, Snakes & Flies: The Diversity of Sex Chromosomes and their Evolution	Caught in the crossfire: Genome defense in light of genomic autoimmunity
Jablonka E.	Tawfik D.	Bachtrog D.	Blumenstiel J. Erwin A., Galdos M., Wickersheim M., Harrison C., Marr K.
How does plasticity influence adaptive evolution?	How do proteins evolve? Simulating evolution with in silico models of protein thermodynamics	Interactions Between A Master Regulator Of Sex Determination And Haploid Sex Chromosomes In The Evolution Of Dimorphic Sexes	The punishment wars
Ghalambor C.	Goldstein R. A.	Umen J. Miyagi A., Hamaji T., Geng S.	Kiers T.

TUESDAY, AUGUST 11TH

	Symposium 28	Symposium 20	Symposium 11	Symposium 33
	Variation in natural selection: patterns, causes, and consequences	Genomics of Local Adaptation	Host defence in a parasitized world: selection, evolution and the maintenance of variation	The molecular basis of adaptation and ecological speciation
11:30 —	POL A	POL B	POL C	POL D
11.30	Temporal fluctuation in the phenotypic optimum of laying date in a wild Blue tit population	Genetic variance associated with overwintering adaptation in a butterfly	Genome wide analysis of selection in immune genes within and among butterfly populations	The molecular basis of genic ecological speciation in sexually deceptive orchids
11:50 —	Marrot P. Garant D., Anne C.	Pruisscher P. Wheat C., Gotthard K.	Keehnen N. Wheat C.	Schlüter P. Sedeek K., Xu S., Shanklin J., Cozzolino S., Schiestl F.
11.50	There is more to pollinator- mediated selection than pollen limitation: Interaction intensity versus functional significance	Experimental evidence for mitochondrial genomic adaptation to climate	Functional variation at innate immune loci in the Seychelles warbler	Gene flow and the genetic architecture of speciation revealed by 1043 stick-insect genomes
	Sletvold N. Ågren J.	Camus M. Florencia Sgrò C. M., Wolff J. N., Dowling D.K.	Gilroy D.	Nosil P.
12:10 —	Local adaptation is prevented along patchy ecological gradients	Origin, history and local adaptation of the recent polyploid Capsella bursa- pastoris	Genetics of natural variation of Daphnia magna resistance to a bacterial pathogen	Loss of function mutations in MC4R drive adaptation of Astyanax mexicanus through hyperphagia
	Bridle J. Butlin R.	Lascoux M. Cornille A., Salcedo A., Kryvokhyzha D., Holm K., Lagercrantz U., Glémin S., Wright S.	Bento G. Routtu J., Bourgeois Y., Ebert D.	Rohner N. Aspiras A., Borowsky R., Tabin C.
12:30 —		The genomics of avian breeding time – an ecologically relevant trait for adaptation to climate change	Experimental evolution of host specificity by comparing single and multiple infections	Identifying the molecular basis of adaptation and genomic divergence in Heliconius butterflies
12:50 —		Gienapp P. Calus M. P.L., Laine V. N., van Oers K., Groenen M. A.M., Slate J., Visser M.E.	Schulte R. D. Bose J., Kloesener M. N.	Nadeau N. Pardo-Diaz C., Whibley A., Supple M., Joron M., McMillan O., Jiggins C.
12.30				
13:40 —	Lunc	h		

14:45

Symposium 21	Symposium 30	Symposium 3	Symposium 8
The evolution of phenotypic plasticity within and across generations	Protein evolution: structural and functional perspective	The Evolution of Sex Chromosomes	Cooperation without kinship: from genomes to mutualisms
MAX 410	MAX 415	GEN C	GEN B
An evolutionary model of maternal effects Hoyle R. Kuijper B.	Gene network re-wiring in the convergent evolution of a key innovation: egg dummies in cichlid fish Gu L. Salzburger W.	Baby sex chromosomes in the housefly Beukeboom L. W. Bopp D., Wimmer E., van de Zande L., Sharma A., Wu Y., Schenkel M., Visser	The origins, persistence and decay of bacterial mutualisms Henry L. Charles G.
		S., Francuski L.	
Paternal heat exposure causes immediate and inherited epigenetic response in Wild guinea pigs	Correlated substitutions are rare under molecular coevolution	Wolbachia bacterial endosymbionts and the evolution of sex determination in the isopod Armadillidium vulgare	'Currency' exchange underlying the long-term association between squid and bioluminescent bacteria
Weyrich A. Lenz D., Jeschek M., Chung T.H., Heeger F., Rübensam K., Goeritz F., Jewgenow K., Fickel J.	Talavera D. Lovell S., Whelan S.	Leclercq S. Thézé J., Giraud I., Chebbi M., Moumen B., Ernenwein L., Grève P., Gilbert C., Cordaux R.	Kremer N. Schwartzman J., Ruby E., McFall-Ngai M.
Genome methylation patterns across castes and generations in a parasitoid wasp	Disease-related mutations in proteins: A study of dynamically correlated networks and coevolved residue clusters	Why are there so many species with Y- autosome fusions?	Spatial exclusion of non- cooperators from released public goods stabilizes inter-specific cooperation
Shaham R. Keasar T. , Ben Schlomo R.	Karami Y. Amselem S., Laine E., Carbone A.	Kitano J. Pennell M., Kirkpatrick M., Otto S., Vamosi J., Peichel C.	Pande S. Kaftan F., Lang S., Germerodt S., Svatos A., Kost C.
	Complex phylogeny of aminoacyl-tRNA synthetases Popinga A. Bouckaert R., Wills P.		

The German Research Foundation (DFG) Funding programs for early

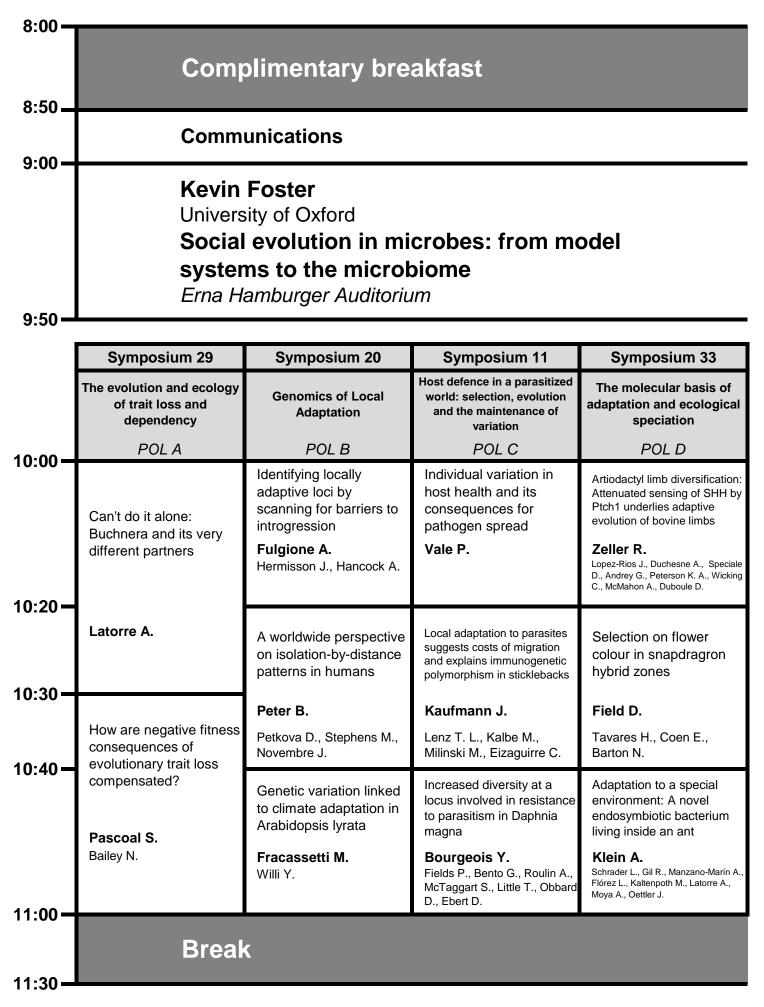
career researchers

TUESDAY, AUGUST 11TH

	Symposium 28	Symposium 20	Symposium 11	Symposium 33
	Variation in natural selection: patterns, causes, and consequences	Genomics of Local Adaptation	Host defence in a parasitized world: selection, evolution and the maintenance of variation	The molecular basis of adaptation and ecological speciation
14:45 —	POL A	POL B	POL C	POL D
14.40	Antagonistic coevolution with competing consumers alters the dynamics of selection over time	Genomics of local adaptation in the Mediterrenean blue tit Cyanistes caeruleus	Toll-like receptors in birds: Diversifying selection, pseudogenization and gene duplication	Multiple morphological and behavioural modifications converge into a function that promotes invasion and diversification within a new adaptive zone
	Frickel J. Becks L.	Szulkin M. Gagnaire P., Bierne N., Charmantier A.	Bainova H. Gutowska M. Weronika, Burt D. W., Vinkler M.	Crumière A. Khila A.
15:05 —	Stress response of	Utilizing large sampling	Diversity through	
15:15	mutation accumulation lines of the green algae Chlamydomonas reinhardtii across two environmental gradients	frames to investigate the genomic determinants of short-term adaptation in Mycobacterium tuberculosis	alternative splicing: Do Dscam1 splice variants respond to bacteria exposure?	Natural Arabidopsis BRX Loss-of-Function Alleles Confer Root Adaptation to Acidic Soil
	Kraemer S.	Hedge J.	Armitage S.	Hardtke C.
45.25	Morgen A., Keightley P., Colegrave N.	Walker T., Walker S., Crook D., Peto T., Wilson D.	Sun W., You X., Kurtz J., Schmucker D., Chen W.	
15:25 —	Geographical variation in predation pressure toward warning signals of an Arctiid moth Parasemia plantaginis	Signatures of selection in an admixed feral chicken population	Major-effect mutations provide resistance to viruses in natural Drosophila populations	The genomic architecture of adaptation and speciation in ecologically divergent forest trees (Populus spp.)
	Rönkä K. Rojas B., Burdfield-Steel E., Gordon S., Nokelainen O., Tasane T., Valkonen J., Mappes J.	Johnsson M. Gering E., Willis P., Getty T., Wright D.	Cao C. Cogni R., Magwire M., Jiggins F.	Paris M. Stölting K. N., Meier C., Heinze B., Castiglione S., Bartha D., Macaya- Sanz D., Gonzalez-Martinez S., Lexer
15:45 — 16:15 —	Break	(С.

Symposium 21	Symposium 27	Symposium 3	Symposium 8
The evolution of phenotypic plasticity within and across generations	Ecology and evolution of floral signals	The Evolution of Sex Chromosomes	Cooperation without kinship: from genomes to mutualisms
MAX 410	MAX 415	GEN C	GEN B
Non-genetic transmission and sex-linked inheritance of prenatal maternal effects in a precocial bird	The adaptive value of within-individual covariation between	Coevolution of the sex chromosomes in Drosophila melanogaster	How do beneficial microbiomes form and adapt within mutualisms?
Tschirren B. Ziegler A., Okuliarova M., Zeman M., Pick J., Giraudeau M.	floral signals and rewards	Lund-Hansen K. Morrow E. H., Abbott J. K.	Innocent T. Al-Bassam M., Schiøtt M., Yu D.W., Hutchings M. I., Boomsma J. J.
Does molecular pleiotropy constrain evolution, plasticity or both? A proteomic perspective in a salmonid fish metapopulation	Benitez-Vieyra S.	Evolution of an unusual sex determination system in a Mammal, the African pygmy mouse Mus minutoides	Mutualism in a community context: Lessons from ants, aphids and their gut microbiomes
Papakostas S. Vøllestad A., Bruneaux M., Aykanat T., Vanoverbeke J., Ning M., Primmer C. , Leder E.	Learning about natural variation of floral odors sets boundaries for	Saunders P. Ronce O., Crochet P., Veyrunes F.	Ivens A. B.F. Kiers E. Toby, Kronauer D. J.C.
Evolutionary and ecological plasticity in short order: Genome- wide evidence for in-situ evolution and adaptation in invasive Florida Burmese pythons	generalization among flowers with the same reward value	The PhyloSex project: Towards a better understanding of sex determination diversity and sex chromosome evolution in fish	Colony fusion as a route to cooperation without kinship in ant supercolonies
Castoe T. Card D., Schield D., Hunter M., Hart K.	Smith B. H. Locatelli F. F., Fernandez P. C.	Anderson J. Klopp C., Parrinello H., Journot L., Postlethwait J. H., Guiguen Y., Schartl M.	Hørsving E. B.M. Pedersen L. S., Huszár D. B., Pontieri L., Boomsma J. J., Pedersen J. Søe

TUESDAY, AUGUST 11TH

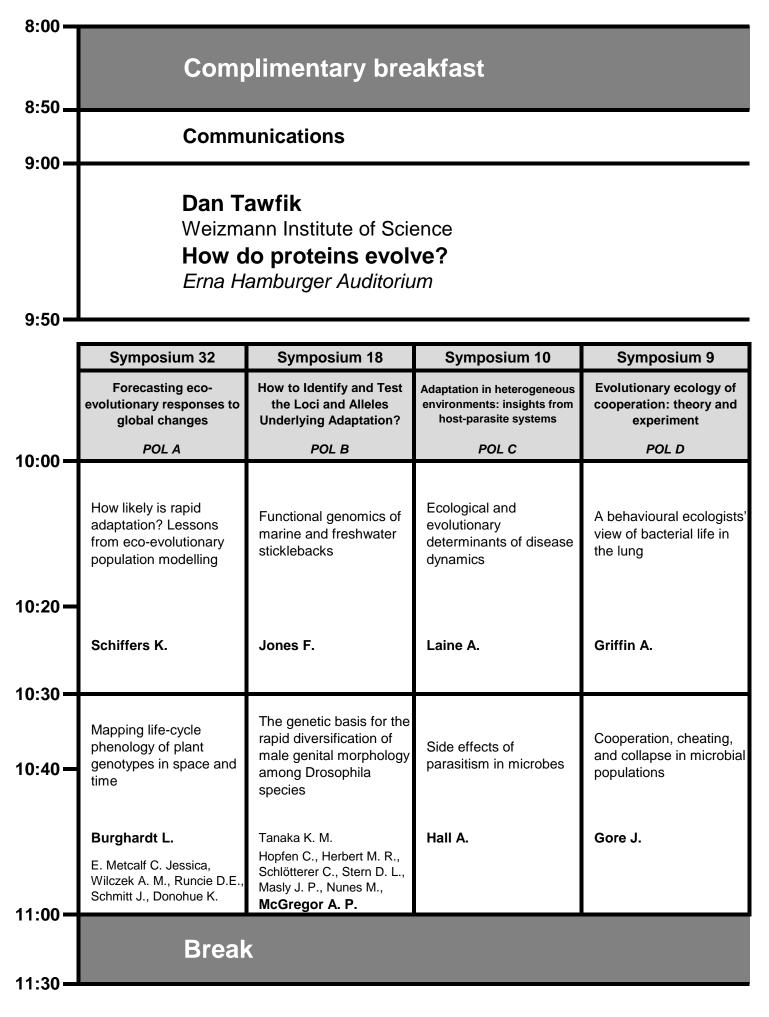

	Symposium 28	Symposium 20	Symposium 11	Symposium 33
	Variation in natural selection: patterns, causes, and consequences	Genomics of Local Adaptation	Host defence in a parasitized world: selection, evolution and the maintenance of variation	The molecular basis of adaptation and ecological speciation
16:15 —	POL A	POL B	POL C	POL D
10.13	Environmental suitability influences the evolvability of morphological traits: Linking biogeography and evolutionary dynamics	Experimental genomic tests for pollution driven rapid evolution in the Mediterranean mussel	Bumblebee immune response upon faecal transplant and microbiota community structure in host parasite interactions	The origin and spread of premating isolation driving incipient speciation in Mimulus
16:35 —	Martinez-Padilla J. Estrada A., Early R., Garcia Gonzalez F.	Štambuk A. Dennis S., Polović D., Šrut M., Soria- Carrasco V., Gompert Z., Baković V., Klobučar G., Nosil P.	Näpflin K. Schmid-Hempel P.	Streisfeld M. Stankowski S., Sobel J.
10.55	Climate-change driven evolution of an ornament in a wild bird	Parallel and non-parallel genomic signatures of selection in three-spine sticklebacks from different regions	Evolution of anti- parasitic behaviors in monarch butterflies	Sexual isolation and the genetics of chemical cues involved in speciation in Heliconius butterflies
16:55 -	Evans S. Gustafsson L.	Liu S. Ferchaud A., Hansen M. M.	de Roode J.	Mérot C. Davey J., Merrill R., Barker S., Leppik E., Frérot B., Jiggins C., Joron M.
16:55		Studying mutation load and purifying selection in natural populations of lodgepole pine and interior spruce	The effectiveness and costs of pathogen resistance strategies in a long-lived host	Key Physiological Innovations during Colonizations of Fresh Water and Land
17:15 —		Conte G. Yeaman S., Hodgins K., Aitken S., Rieseberg L., Whitlock M.	Susi H. Laine A.	Lee C.E. Eyun S., Posavi M., Gelembiuk G., Remfert J., Charmantier G., Charmantier-Daures M.
		Extreme local adaptation in Drosophila chemosensory perception	Trade-off between dual roles of the gut in nutrient acquisition and immune defense: Experimental evolution and physiological basis	Distinct genetic mechanisms of parallel speciation in phytophagous ladybird beetles
		Arguello J. Roman Cardoso-Moreira M., Mohammed J., Grenier J.K., Gottipati S., Clark A. G., Benton R.	Kawecki T. Vijendravarma R.	Matsubayashi K. Soria-Carrasco V., Gompert Z., Villoutreix R., Muschick M., Togashi A., Katakura H., Ueno H., Nosil P.
17:35 —				
17:40 -				

Meet the Editors

19:00

Symposium 21	Symposium 27	Symposium 3	Symposium 35
The evolution of phenotypic plasticity within and across generations	Ecology and evolution of floral signals	The Evolution of Sex Chromosomes	Open symposium
MAX 410	MAX 415	GEN C	GEN B
Bridging Ecology and Evolution by Symbiotic and Epigenetic Mechanisms	Paternity analysis reveals mating patterns in an Antirrhinum hybrid zone incorporating sibships and phenotypes	Evolution of sex- determining modes in amniotes: Transitions, stability and ancestral state	Specialist and generalist oviposition strategies in butterflies: Maternal care or precocious young?
Soen Y.	Ellis T. Field D., Barton N.	Kratochvil L. Rovatsos M., Altmanova M., Vukic J., Pokorna M.	Schäpers A. Nylin S., Carlsson M., Janz N.
Plastic vs genetic responses to temperature acclimation: quantitative traits to transcripts	The double role of Salvia viridis' extrafloral display	The evolution of sexual specialization in an artificial dioecious fungus	Factors affecting the evolution of host- switching in infectious diseases
Clemson A. Telonis-Scott M. , Sgro C.	Gerchman Y. Keasar T.	Nieuwenhuis B. Johannesson H., Immler S.	Wang A. Meier M., Balloux F.
Adult transcriptome variation is determined by egg to adult development time in a desert drosophilid	Heritability of floral volatiles and pleiotropic responses to artificial selection in Brassica rapa		The long reach of a tapeworm parasite in its social host
Etges, W.J. de Oliveira C., Rajpurohit S., Gibbs A.	Zu P. Schiestl F., Blankenhorn W.		Beros S. Jongepier E., Hagemeier F., Foitzik S.
Within and across generation life-history responses to nutritional stress during development	Are florivores agents of selection on floral colour? Review and Synthesis		Wing pigmentation and immune response in the Glanville fritillary butterfly
Saastamoinen M.	Ghara M. Sapir Y.		Rosa E. Saastamoinen M.

WEDNESDAY, AUGUST 12TH


Symposium 21	Symposium 7	Symposium 2	Symposium 35
The evolution of phenotypic plasticity within and across generations	Social Evolution & Sexual Conflict	What is new in the study of sex allocation?	Open symposium
MAX 410	MAX 415	GEN C	GEN B
The evolution of transgenerational integration of information in heterogeneous environments Leimar O. McNamara J.	Sexual conflict and social behaviour	The crucial link between 'how' and 'why' in the evolution of environmental sex determination	Drosophila wing shape Integration: A multi-level approach Benitez H. Klingenberg C.
Maternal effect on worker size in the seed harvester ant Pogonomyrmex rugosus	Chapman T.	Schwanz L.	The evolution of cuticular hydrocarbon profiles in ants
Paolucci S.		Sex allocation in	Schmitt T.
Czech B., Hannon G., Schwander T., Keller L.	Inclusive fitness and sexual conflict	simultaneous hermaphrodites: Lessons from an	Blaimer B., Menzel F.
Pollution-induced non- genetic inheritance and its effect on eco- evolutionary dynamics Plaistow S. Chan B., Collin H., Paterson S.	Gardner A.	emerging model organism Schärer L.	Queen signalling in the honeybee Richardson T.

WEDNESDAY, AUGUST 12TH

	Symposium 29	Symposium 20	Symposium 11	Symposium 33
	The evolution and ecology of trait loss and dependency	Genomics of Local Adaptation	Host defence in a parasitized world: selection, evolution and the maintenance of variation	The molecular basis of adaptation and ecological speciation
11:30-	POL A	POL B	POL C	POL D
11.30	Genomic signatures of sexual trait decay in an asexual wasp	The role of host plant adaptation in genomic divergence and diversification of Timema stick insects	Variation in phenotypic selection on quantitative immune defence traits in a freshwater snail	The hemoglobin repertoire in the order of Gadiformes linked to depth adaptation
11:50-	Kraaijeveld K. Anvar Y., Frank J., den Dunnen J., Ellers J.	Muschick M. Soria-Carrasco V., Dennis S. R., Gompert Z., Comeault A. A., Feder J. L., Nosil P.	Langeloh L. Jokela J., Seppälä O.	Baalsrud H.T. Tørresen O. Kristian, Malmstrøm M., Salzburger W., Jakobsen K. Sigurd, Jentoft S.
11.00	Explaining siderophore loss, cross-use and exploitation in natural Pseudomonas communities	The flexible genome: Uncovering the regulatory basis of phenotypic plasticity	Diversity and divergence of immune genes in four wild rodent species	Molecular structure and functional diversity of a naturally polymorphic enzyme: PGI of Colias
12:10-	Butaite E. Kuemmerli R.	Oostra V. Saastamoinen M., Zwaan B. J., Wheat C.W.	Turner A. Begon M., Pedersen A., Paterson S.	Hill J. Watt W.
12.10-	Strong selection for a loss of metabolic autonomy in bacteria	Ecological genetics of local adaptation in Arabidopsis thaliana	Constitutive protection, mismatch, and secondary exposure in transgenerational immune memory in the bumblebee Bombus terrestris	The genetic basis of parallel speciation in a marine snail
10-00	D'Souza G. Waschina S., Kost C.	Ågren J. Oakley C. G., Lundemo S., Schemske D.W.	Barribeau S. Schmid-Hempel P., Sadd B.	Westram A.M. Panova M., Galindo J., Butlin R.
12:30 —	Loss and (re)gain of color vision in deep-sea fishes: Uncovering the secrets of 100 teleost genomes		Intracellular endosymbiont selection contributes to Drosophila adaptation to viral infection	
12:50 —	Musilova Z. Cortesi F., Malmstrøm M., Tørresen O., Jentoft S., Salzburger W.		Faria V. G. Martins N. E., Magalhães S., Nolte V., Schlötterer C., Teixeira L., Sucena É.	
12.00-	Lunc	h and Excursio	ons	

Symposium 21	Symposium 7	Symposium 2	Symposium 35
The evolution of phenotypic plasticity within and across generations	Social Evolution & Sexual Conflict	What is new in the study of sex allocation?	Open symposium
MAX 410	MAX 415	GEN C	GEN B
Genetic basis of variation in thermal plasticity for body pigmentation Lafuente E.	The influence of relatedness on male entomopathogenic nematode aggression	Sex allocation, juvenile mortality & the costs imposed by offspring on parents and siblings Kahn A.	Transcriptomic underpinning of lifespan differentiation between castes in ants Lucas E.
Beldade P.	Abigail M., Christine G.	Jennions M., Kokko H.	Riba-Grognuz O., Corona M., Wurm Y., Keller L.
Transgenerational effects of diet through the maternal and paternal lineage	Local mate competition mediates sexual conflict over sex ratio in a haplodiploid mite	The evolution of unisexual flowers within inflorescences	Adaptive landscapes of transcription factor binding sites
Zizzari Z.V. van Straalen N. M., Ellers J.	Magalhaes S. Macke E., Olivieri I.	Torices R. Afonso A., Méndez M.	Aguilar-Rodríguez J. Payne J. L., Wagner A.
Age-dependent plasticity in reproductive effort is driven by metabolic reserves and mating opportunities, not adaptive allocation strategies	Male Drosophila melanogaster fight more, and sire shorter- lived daughters, when rival male are unrelated and unfamiliar	Genomic conflict over sex allocation in the parasitoid wasp Nasonia vitripennis	Why shuffle genes? The dynamics of integron evolution in changing environments
Houslay T. Houslay K., Rapkin J., Hunt J., Bussière L.	Carazo P. Perry J., Johnson F., Pizzari T., Wigby S.	Cook N. Ritchie M. G., Pannebakker B. A., Tauber E., Shuker D. M.	Engelstädter J. Harms K., Johnsen P. Jarle
	How sex-biased dispersal affects the resolution of intralocus sexual conflict	Sperm storage and the size advantage model of sex allocation in the protandrous sex-changer Crepidula fornicata	
	Kuijper B. Johnstone R. A.	Broquet T. Barranger A., Billard E., Bestin A., Berger R., Honnaert G., Viard F.	

THURSDAY, AUGUST 13TH

Symposium 24	Symposium 26	Symposium 4	Symposium 35
Evolution of behavioural variation	Real-time bacterial evolution in vivo and in vitro	Evolutionary consequences of sexually antagonistic selection	Open symposium
MAX 410	MAX 415	GEN C	GEN B
Genetic architecture of aggression and cooperation in the California harvester ant Pogonomyrmex californicus	The role of epistasis in the evolution and epidemiology of multidrug-resistant tuberculosis	Comparing within and between-sex pleiotropy as constraints on the evolution of male and female gene expression	A theoretical study of sympatric divergence of whitefish in Scandinavia Thibert-Plante X. Amundsen P., Kahilainen K., Praebel K., Østbye K., Gavrilets S.
Gadau J. Fewell J., Mikheyev A.	Gagneux S.	Chenoweth S.	Genomic imprinting and its systematic perturbation in abortive interspecific tomato seeds
Convergent molecular signatures of plastic phenotypes in eusocial evolution	Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic	Sexually antagonistic epigenetic marks	Florez Rueda A.M. Margot P., Schmidt A., Widmer A., Grossniklaus U., Städler T.
Sumner S.	fibrosis Marvig R.L. Sommer L. M., Molin S., Johansen H.K.	Rice W.	Why are ring species so rare? Martins A. B. de Aguiar M.A.M.

THURSDAY, AUGUST 13TH

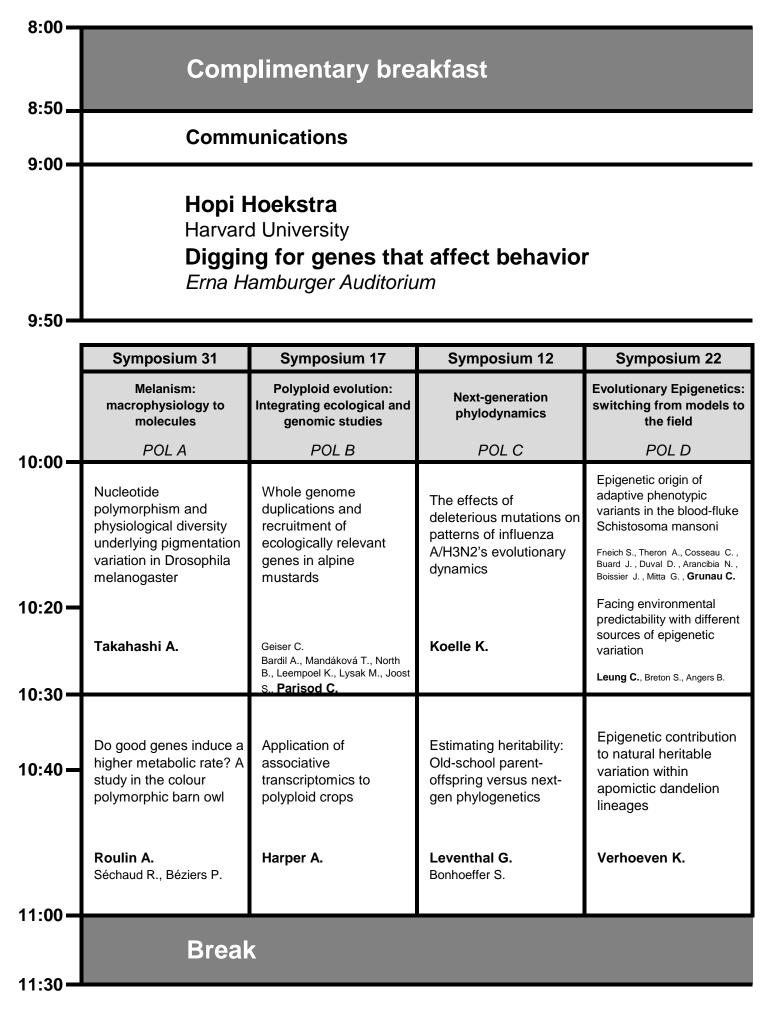
	Symposium 32	Symposium 18	Symposium 10	Symposium 9
	Forecasting eco- evolutionary responses to global changes	How to Identify and Test the Loci and Alleles Underlying Adaptation?	Adaptation in heterogeneous environments: insights from host-parasite systems	Evolutionary ecology of cooperation: theory and experiment
44.20	POL A	POL B	POL C	POL D
11:30-	The accumulation of mutation load and range dynamics	Functional characterization of an adaptive cis- regulatory polymorphism in Drosophila melanogaster	Parasite evolution in heterogeneous and spatially structured host populations	Rock-paper-scissors dynamics maintain cooperation and diversity in well-mixed bacterial communities
11:50-	Henry R. Coulon A., Bartoń K., Travis J.	Parsch J. Glaser-Schmitt A.	Lion S.	Kümmerli R. Inglis F., Biernaskie J., Gardner A.
11.50-	Local adaptation versus inbreeding depression in marginal populations of a Mediterranean alpine plant: Are they worthy of conservation in a context of climate change?	From genome to function: Timing adaptations in the intertidal insect Clunio marinus	Relative fitness of a generalist parasite on alternative hosts: A cross-infestation experiment of the hen flea among sympatric passerine hosts	Sibling cooperation mitigates effects of low parental care in earwigs: A new perspective on the early evolution of family life
12:10-	Morente-López J. García-Fernández A., Lara-Romero C., Rubio-Teso M.L., Ruiz R., Sánchez A., Iriondo J.M.	Kaiser T. S.	Appelgren A. McCoy K., Richner H.	Kramer J. Thesing J., Meunier J.
12.10	Forecasting the demographic and evolutionary response of perennial Alpine plants	Characterization of the wing colour patterning supergene in a mimetic butterfly	Parasite evolution in a host sexually dimorphic world	Kin Selection and Maternal Effects: The confusion, consequences and case study
40.00	Cotto O. Thuiller W., Guillaune F.	Saenko S. Prunier F., Llaurens V.	Duneau D. Buchon N., Lazarro B.	Thomson C. Hadfield J.
12:30-	Combining demography with quantitative and population genetics to infer the adaptive potential of small populations			The role of antimicrobials in the evolution of cooperation
40.50	Vincenzi S. Crivelli A., Garza C.			Vasse M. Torres-Barceló C., Hochberg M. E.
12:50 —				
13:40 —	Lunc	h		
14:45				

Symposium 24	Symposium 26	Symposium 4	Symposium 35
Evolution of behavioural variation	Real-time bacterial evolution in vivo and in vitro	Evolutionary consequences of sexually antagonistic selection	Open symposium
MAX 410	MAX 415	GEN C	GEN B
Bold individuals live in risky environments: Nature, nurture or both?	Omics of endosymbiosis adaptation during experimental evolution of legume symbionts	Resource competition and the evolution of sexual dimorphism	Male barn swallows mimic nestlings to attract females
Holtmann B. Nakagawa S.	Clerissi C. Capela D., Marchetti M., Li F., Torchet R., Cruveiller S., Gris C., Rocha E. P.C., Masson-Boivin C.	De Lisle S. Rowe L.	Hasegawa M. Arai E., Watanabe M., Nakamura M.
Direct and indirect genetic effects shape the social phenotype of great tits	Rapid evolution of bacterial pathogens co- infecting an animal host	Sexual selection drives short- and long-term evolution of the avian Z chromosome	How sick are sexy males? Testing Hamilton & Zuk hypothesis with a meta-analytical approach
Radersma R. Firth J. A., Garroway C. J., Voelkl B., Sheldon B. C.	King K. Brockhurst M., Paterson S., Hurst G.	Wright A. Harrison P., Zimmer F., Montgomery S., Pointer M., Mank J.	Prokop Z. Buczek M. , Plesnar- Bielak A., Nakagawa S., Michalczyk L.
Baffling: An alternative signalling strategy using self-made tools	Phylodynamic analysis of a mycobacterium tuberculosis outbreak	Insights on Sexually Antagonistic Selection in the Human Genome	Worldwide patterns of bird colouration on islands and associated mechanisms
Deb R. Balakrishnan R.	Kühnert D. Stucki D., Coscolla M., Fenner L., Stadler T., Gagneux S.	Lucotte E. Laurent R., Heyer E., Ségurel L., Toupance B.	Doutrelant C. Paquet M., Renoult J., Crochet P., Grégoire A., Covas R.
The influence of age and gene expression on division of labor in a social insect	Parallel evolution of a global regulator ameliorates the cost of plasmid carriage		
Kohlmeier P. Susanne F., Barbara F.	Harrison E. Paterson S., Spiers A., Brockhurst M.		
	Meet the U.S. National Science Foundation (NSF)		

THURSDAY, AUGUST 13TH

	Symposium 32	Symposium 18	Symposium 10	Symposium 9
	Forecasting eco- evolutionary responses to global changes	How to Identify and Test the Loci and Alleles Underlying Adaptation?	Adaptation in heterogeneous environments: insights from host-parasite systems	Evolutionary ecology of cooperation: theory and experiment
14:45 —	POL A	POL B	POL C	POL D
14.45	Coevolution of genetic variance and species' range in a changing environment	An island model for unraveling adaptive history: Cape Verde Arabidopsis	Parasitoid adaptation to hosts with symbiont- conferred resistance	Testing inclusive fitness theory in a lower termite
	Polechova J. Barton N.	Fulgione A. Arnoux S., Hermisson J., Hancock A.	Dennis A. Vorburger C.	Korb J. Hoffmann K.
15:05 —			Endosymbiotic bacteria	An evolutionarily significant
15:15 —	The role of sex and recombination in evolutionary rescue	The Genetic Architecture of Recombination Rate Variation in Drosophila melanogaster	protect aphids against natural enemies in a natural wet meadow habitat	unicellular strategy in response to starvation in Dictyostelium social amoebae
	Uecker H. Hermisson J.	Singh N. Hunter C.	Hrcek J. Godfray H. Charles J.	Nizak C. van Baalen M., Dubravcic D.
15:25 —	Environmental marginality and the evolutionary potential of peripheral populations in Arabidopsis lyrata	Tracking genomic changes during rapid life history evolution	All aboard! Tracking host-parasite historical associations in the Canary Islands	Cheating on the edge: Spatial self-organization promotes cooperation in expanding bacterial colonies
	Lee-Yaw J. Willi Y.	Therkildsen N. O. Munch S. B, Conover D. O., Palumbi S.R.	Jorge F. Perera A., Poulin R., Roca V., Carretero M. A.	Jousset A. Hille A., Scheu S., Meyer K.
15:45 — 16:15 —	Break	(

Symposium 24	Symposium 25	Symposium 4	Symposium 35
Evolution of behavioural variation	Groups versus individuals: levels of selection in microbial systems	Evolutionary consequences of sexually antagonistic selection	Open symposium
MAX 410	MAX 415	GEN C	GEN B
DNA methylation in the clonal raider ant Cerapachys biroi Libbrecht R. Oxley P., Keller L., Kronauer D.	Functional trade-offs and phenotypic diversity in cellular migration	Field estimates of parentage reveal sexually antagonistic selection on body size in a population of Anolis lizards Duryea K. Bergeron P., Clare-Salzler Z., Calsbeek R.	Inference of past historical events using ABC and MCMC methods on population genetics data sets Austerlitz F.
Correlated experimental evolution of behaviour and life history in Drosophila	Emonet T.	Identification and characterisation of sexually antagonistic loci in Drosophila melanogaster	Unravelling the evolutionary history of the mosquito disease vector Aedes aegypti; Lineage diversification and successful worldwide colonisation
Hoedjes K. Kapun M., Zwaan B., Flatt T., Keller L.	Bacterial Genomic	Hill M. Morrow T., Fowler K., Reuter M.	Bennett K.
The social niche experienced early in life influences the behavioural phenotype	Diversity in Light of Environmental Selection	Male-male competition in the pistil causes rapid sexually antagonistic evolution in a plant and a correlated response on a mating- system related floral trait	Running faster or jumping further? Analysis of adaptive walks in various classes of fitness landscapes
Balzarini V. Taborsky M., Frommen J. G.	Polz M.	Lankinen Å. Hydbom S., Strandh M.	Trubenova B. Paixao T.


THURSDAY, AUGUST 13TH

	Symposium 32	Symposium 18	Symposium 10	Symposium 9
	Forecasting eco- evolutionary responses to global changes	How to Identify and Test the Loci and Alleles Underlying Adaptation?	Adaptation in heterogeneous environments: insights from host-parasite systems	Evolutionary ecology of cooperation: theory and experiment
16:15-	POL A	POL B	POL C	POL D
10.13	Evolution of seasonal timing in a changing world: How empirical evidence and phenological models can help us to forecast the rate of adaptation	The genetic basis of parallel evolution in an introduced species	Population size shape reciprocal adaptations in the experimental host- parasite coevolution	Long Life, Promiscuity and the Origin of Cooperation in Birds
	Salis L. Visser M.	Gould B. Stinchcombe J.	Papkou A. Schalkowski R., Barg M., Braker I., Schulenburg H.	Downing P.
16:35 —	From genes to ecosystems: The molecular mechanisms of eco-evolutionary feedbacks from rapid adaptation of herbivore consumers to nutrient limitation	A Clinal Polymorphism in Insulin Signaling Has Major Effects on Drosophila Life History	Testing for genetic differentiation along altitudinal gradients in ticks (Ixodes ricinus)	Diversity in parent- offspring communication in birds: Shifting between signals and cues
	Papakostas S. Declerck S.	Durmaz E. Rajpurohit S., Betancourt N., Schmidt P.S., Flatt T.	Lemoine M. Tschirren B.	Caro S. Griffin A., Hinde C., West S.
16:55 —	Entire a time and batters and			Developie e e ciel
	Estimating evolutionary potential in the wild: Role and stability of the G matrix		Eco-evolutionary dynamics in coevolving host-virus systems	Developing social evolution theory into a set of tools for analyzing microbial data
47.45	Teplitsky C. Chantepie S., Moller A. P., Nakagawa S., de Lope F., Gustafsson L., Mills J. A., Wheelwright N., Charmantier A.		Frickel J. Becks L.	Smith J.
17:15	Adaptation lags in bet- hedging traits during periods of climate change		Host age structure as a source of heterogeneity in host-parasite interactions	Fitness costs in spatially structured environments
	Van Dooren T. J. M.		Ben-Ami F.	Débarre F.
17:35				
17.40 -				

Symposium 24	Symposium 25	Symposium 4	Symposium 35
Evolution of behavioural variation	Groups versus individuals: levels of selection in microbial systems	Evolutionary consequences of sexually antagonistic selection	Open symposium
MAX 410	MAX 415	GEN C	GEN B
Genomic changes associated with behavioural plasticity: Selection for improved learning behaviour	Is HIV short-sighted? Insights from a multistrain nested model	Sex biased expression as a sexually antagonistic trait	The molecular mechanisms and reversibility of fisheries- induced evolution
Liefting M. Kraaijeveld K., Le Lann C., Wertheim B., Ellers J.	Lythgoe K. Pellis L., Fraser C.	Veltsos P. Fang Y., Cossins A. R., Snook R.R., Ritchie M.G.	Uusi-Heikkilä S. Sävilammi T., Papakostas S., Arlinghaus R., Primmer C.
Maladaptive reproductive investment and behavioral variation in urban habitat	Spatial constrains on public good production during biofilm development	Sexual conflict and sex- biased gene expression throughout development	Density dependence determines the role of extrinsic mortality in shaping life history traits
Demeyrier V. Grégoire A., Lambrechts M., Charmantier A.	Hölscher T. Bartels B., Gallegos- Monterrosa R., Kovacs A.T.	Ingleby F.	Dańko M. J. Burger O., Kozłowski J.
The role of state- behavior feedbacks in explaining adaptive personality differences	Migrating together: How Bacillus subtilis uses division of labor to colonize surfaces	Evolution of haploid selection in predominantly diploid organisms	Sex-specific evolution of learning performance, locomotion, reproduction and lifespan in an outcrossing nematode
Moiron M. Mathot K. J., Dingemanse N. J.	van Gestel J. Vlamakis H., Kolter R.	Otto S. P. Scott M. F., Immler S.	Zwoinska M. Lind M., Cortazar M., Ramsden M., Maklakov A.
Behavioural interactions of a planktonic crustacean with pond sediments	Experimental evolution of increased efficiency through serial propagation in emulsion	Sexually antagonistic selection in canaries not generated by testosterone- related intralocussexual conflict	A comprehensive phylogenetic study of mammalian embryology and skeletogenesis reveals the altricial life history of the placental ancestor, modularity and a brain- bone development link
Arbore R. Mushegian A., Andras J., Ebert D.	Rabbers I. Bruggeman F., Bachmann H., Teusink B.	Iserbyt A. Eens M., Müller W.	Sánchez-Villagra M. Werneburg I., Laurin M., Koyabu D.

FRIDAY, AUGUST 14TH

Symposium 23	Symposium 16	Symposium 19	Symposium 35
Emerging 'models' in evolutionary and ecological neurobiology	Evolutionary consequences of selfish genetic elements	Ignoramus et Ignorabimus? How much genome scans can and should tell us about evolution	Open symposium
MAX 410	MAX 415	GEN C	GEN B
Genetic and neural basis for the evolution of schooling behavior in sticklebacks	Whole genome meiotic drive in Arthropods	The promise of reverse ecology	The genetic sex determination system predicts adult sex ratio in tetrapods Kirkpatrick M. Pipoly I., Bókony V., Székely T., Liker A.
Peichel C. L. Greenwood A. K., Wark A. R., Mills M.G.	Ross L.	Rockman M.	A quantitative genetic signature of senescence in a short-lived perennial plant
Using live bearing fish as short generation time	Origin, evolution and consequences of sex	Human adaptation to life	Pujol B. Marrot P., Pannell J.
models in the study of vertebrate brain evolution	chromosome drive in stalk-eyed flies	in the high arctic	Bauplan constraints on the evolution of lifespan in Vertebrates
Kolm N.	Wilkinson G. A. Reinhardt J., Paczolt K. A.	Nielsen R.	Scheuerlein A.

FRIDAY, AUGUST 14TH

	Symposium 31	Symposium 17	Symposium 12	Symposium 22
	Melanism: macrophysiology to molecules	Polyploid evolution: Integrating ecological and genomic studies	Next-generation phylodynamics	Evolutionary Epigenetics: switching from models to the field
11.20	POL A	POL B	POL C	POL D
11:30 —	Tests of the thermal melanism and melanisation desiccation- resistance hypotheses in New Zealand Hemideina maori (Orthoptera: Stenopelmatidae)	Zinc accumulation, transcriptomics and asymmetric adaptation in the allopolyploid Arabidopsis kamchatica	New routes to phylogeography	Importance of pollution induced epigenetic inheritance for phenotypic diversification in Daphnia pulex
11:50 -	King K. Sinclair B., Waters J., Wallis G.	Paape T. Hatakeyama M., Sese J., Shimizu-Inatsugi R., Shimizu K.	De Maio N. Wilson D.	Collin H. Paterson S., Plaistow S.
11.00	Effects of MC1R gene on sexual dimorphism in barn owls and the potential conflict between natural and sexual selection on melanin-based colorations	Evolutionary analysis and demographic inference for polyploid genomes using ABC	Heterogeneity in antibody range and the antigenic drift of influenza A viruses	Associations of climate with DNA methylation polymorphisms provide evidence of local response to environment in a California oak, Quercus lobata
12:10 —	San-José Garcia L.M. Ducrest A., Ducret V., Béziers P., Simon C., Wakamatsu K., Roulin A.	Roux C. Pannell J.	Gomes G.	Sork V. Gugger P.
12.10	Could melanin-based plumage colouration be adaptive in environments polluted with trace metals?	Molecular basis of ecological diffusion after recurrent allopolyploidization in Dactylorhiza	Phylodynamic analysis of poliovirus outbreak	A role for methylation in responding to environmental stress in a wild rodent
12:30 —	Chatelain M. Gasparini J., Frantz A.	Paun O. Balao F., Lorenzo M., Diehl D., Hao B., Trucchi E., Hedrén M.	Li L. Grassly N. C., Fraser C.	Sims A. van Cann J. , Koskela E., Mappes T., Watts P.
12.00	Larval UV exposure impairs adult immune function through a trade-off with larval investment in cuticular melanin	Whole genome duplication events and evolution of the self-incompatibility system are strongly associated within the Brassicaceae	Phylodynamic inference for bacterial and viral populations using BEAST 2	Epigenetic divergence and parallel evolution in Heliosperma pusillum (Caryophylaceae)
12:50 -	Debecker S. Sommaruga R., Maes T., Stoks R.	Vekemans X. Henocq L., Castric V., Poux C.	Vaughan T. Leventhal G., Drummond A., Welch D., Stadler T., French N.	Trucchi E. Flascher R., Romero M. Lorenzo, Frajman B., Schönswetter P., Paun O.
13:40 -	Lunc	h		
13.40		Members meeting amburger Auditoriu		
14:45				

Symposium 23	Symposium 16	Symposium 19	Symposium 35
Emerging 'models' in evolutionary and ecological neurobiology	Evolutionary consequences of selfish genetic elements	Ignoramus et Ignorabimus? How much genome scans can and should tell us about evolution	Open symposium
MAX 410	MAX 415	GEN C	GEN B
Innate differences in auditory perception and reproductive isolation in an avian species pair Wheatcroft D.	Mating system shifts and transposable element evolution Ågren J.A. Wright S. I.	Genomic basis of the evolution and variation in Drosophila immunity against parasitoids Wertheim B. Salazar-Jaramillo L., Gerritsma S., Jalvingh K.M.	Early-life reproduction is associated with increased mortality risk but enhanced lifetime fitness in humans Lummaa V. Hayward A., Nenko I.
From the jungle to the barn: Independent genetic control for increased brain and body size and Mosaic brain evolution in chickens during domestication Henriksen R. Andersson L., Jensen P., Wright D.	Spore killer genomics: Elucidating causes and consequences meiotic drive in Neurospora Svedberg J. Molnar R. I., Hammond T. M., Johannesson H.	A complementary method to genome scans for selection against maladaptive gene flow Aeschbacher S. Coop G.	Repair or reproduce? Trying to solve an open question - an experimental study on zebra finches Sudyka J. Casasole G., Rutkowska J., Cichoń M.
Evolution of acid- sensing olfactory circuits in Drosophila Prieto-Godino L. Rytz R., Cruchet S., Abuin L., Bargeton B., Silbering A., Ruta V., Dal Peraro M., Benton R.	The molecular basis of paris sex ratio meiotic drive in Drosophila simulans Helleu Q. Gérard P. R., Dubruille R., Ogereau D., Bastien S., Prud'homme B., Loppin B., Montchamp-Moreau C.	The genomic consequences of local adaptation in deer mice Pfeifer S. P. Laurent S., Foll M., Peterson B., Jensen J. D., Hoekstra H. E., Barrett R. D. H.	Reproductive costs in males: Does it really matter? Gamelon M. Bleu J., Sæther B.
Communication scenes of weakly-electric fish recorded in natural habitats challenge sensory processing Benda J. Henninger J., Krahe R.	Genome size variation and song attractiveness in grasshoppers: Sexual selection against large genomes? Schielzeth H. Streitner C., Lampe U., Franzke A., Reinhold K.	The genetic architecture of recombination rate variation in a wild population Johnston S. Slate J., Pemberton J.	Slow development as an evolutionary cost of long life Lind M. Chen H., Meurling S., Guevara Gil A.C., Carlsson H., Zwoińska M., Maklakov A.

14:45 —	FRIDAY, AUGUST 14 TH
15:30-	ESEB Presidential Address Laurent Keller University of Lausanne Supergenes, sex, and sociality <i>Erna Hamburger Auditorium</i>
	John Maynard Smith Prize 2014 Laurie Stevison Auburn University The timescale of recombination rate evolution in great apes <i>Erna Hamburger Auditorium</i>
16:10 —	Break
16:40 —	Break
	John Maynard Smith Prize 2015 Matthew Hartfield University of Toronto Mathematical adventures in sex and disease evolution <i>Erna Hamburger Auditorium</i>
17:20 —	Closing ceremony Erna Hamburger Auditorium
17:50 —	
19: 00 —	
	Conference dinner <i>Unithèque</i>
21:00 — 2:00 —	Concert Orchestre jaune <i>Unithèque</i>

Poster session A Monday, August 10th 1740-1940

Génopode 2000

Symposium 11. Host defence in a parasitized world: selection, evolution		ation
Resistance and tolerance towards parasites in a polymorphic insect	Willink B. et al.	1
Evolutionary Potential of Ectoparasitism by Mites	Polak M. et al.	1
Coevolution between the red flour beetle and Bacillus thuringiensis bacteria:		
	Milutine de Ductuel	0
Transcriptome analysis of host defence after experimental evolution	Milutinovic B. et al.	2
Contemporary evolution of immunity in invasive species: The case of the		
domestic mouse (Mus musculus domesticus) and of the black rat (Rattus		
rattus) in Senegal	Diagne C. et al.	2
· · · · · · · · · · · · · · · · · · ·		_
A targeted presetive response to prevent disease sutbreaks in ont essistics	Pull C. et al.	2
A targeted proactive response to prevent disease outbreaks in ant societies	Pull C. et al.	3
Parasitism as a driver of age-specific mortality in Asian Elephants (Elephas		
maximus)	Lynsdale C. et al.	3
Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds	Vinkler M. et al.	4
Individual multilocus heterozygosity at immune gene loci but not		•
microsatellites influences roe deer natal dispersal	Vanpé C. et al.	4
The QRS (Quantification of Representative Sequences) pipeline for		
amplicon sequencing: Case study on within population ITS1 sequence		
variation in a microparasite infecting Daphnia	Gonzalez Tortuero E. et al.	5
Variation of vector competence in Culicoides sonorensis	Morales-Hojas R. et al.	5
	Morales-hojas R. et al.	5
Why Sexually Transmitted Bacteria Tend to Cause Infertility: An		
Evolutionary Hypothesis	Apari P. et al.	6
Ants do drugs to fight disease	Freitak D. et al.	6
Steady state and induced immunity among castes of Formica exsecta	Stucki D. et al.	7
	Stucki D. et al.	1
The Impact of Parasite Mediated Selection on the Host's Genetic and		
Phenotypic Diversity at the Metapopulation Level	Kaufmann A. et al.	7
Use, effectiveness and variability of external immune defense in ants	Tragust S.	8
Multidimentional manipulation of host behaviour explains the ecological	-	
success of a social parasite	Foitzik S. et al.	8
Host age modulates parasite within-host competition	Izhar R. et al.	
	iznar R. et al.	9
Local adaptation between malaria and its bird hosts: An experimental		
approach	Jenkins T. et al.	9
Variation in Toll-like receptor 4 in closely related passerine species adapted		
for different environments	Králová T. et al.	10
The Genetic Basis of Behavioral Coevolution: Adaptations in Socially		10
		10
Parasitic Slavemakers and Their Hosts	Alleman A. et al.	10
Mixed diets – the key to a healthy life?	Dickel F. et al.	11
Evolution of immune responses and parasitoid virulence in a spatial context	Hambäck P. et al.	11
Lieux ene se such die nem trais staries effected humanishis en discussents Q	Davages Ellestel	40
How are coevolutionary trajectories affected by variable environments?	Brunner F. et al.	12
Uncovering host defense strategies: Bacterial infection in Drosophila		
melanogaster	Kutzer M. et al.	12
The relationship between host oxidative stress and Plasmodium infection in		
the canary, Serinus canaria	Delhaye J. et al.	13
	Demaye J. et al.	13
Coinvasion and Coinfection: Evolution and adaptation in two invasive		
parasites infecting blue mussels	Feis M. et al.	13
Gene diversity of Major histocompatibility complex (MHC) class II alleles of		
Scandinavian anuran species	Cortazar Chinarro M. et al.	14
Disentangling genetic and parental effects in determining immune function	contactor of milding with of the	
in a simultaneously hermaphroditic snail	Seppälä O. et al.	14
Microbiota plays a role in oral immune priming in Tribolium castaneum	Futo M. et al.	15
Not all MHC alleles are equal: Different characteristics of MHC Class I		
•	O'Connor E. et al.	15
alleles among song birds		15
Use of Concanavalin A in skin-swelling test of immune responsiveness		
facilitates interpretation of the measurement in rodents	Bílková B. et al.	16

Evolution of specific resistance against bacterial infection: Based on		
genetically hard-wired or phenotypically plastic defences?	Knoblich K. et al.	17
Host-mutualist and host-parasite coevolution in tripartite interactions	Rafaluk C. et al.	17
Differential expression of MHC genes in three species of sparrows indicates		
conserved functional differences	Drews A. et al.	18
Interactions among co-infecting bacterial strains and fluke genotypes shape		
disease virulence	Karvonen A. et al.	18
Acquired host responses erode advantages of co-infection by multiple		
parasite genotypes	Klemme I. et al.	19
Defence by AMP synergies against variable parasites	Schmid-Hempel P. et al.	19
MHC and Borrelia in bank voles: Divergent allele advantage	Scherman K. et al.	20
Transcriptomic response to pathogen challenges in leaf-cutting ants	Schiøtt M. et al.	20
Distribution of protective symbiont in natural populations	Leclair M. et al.	21
Is There An Association Between Haemosporidian Parasite Infection And		
Toll-Like Receptor (TLR) Genotype?	Razali H. et al.	21
Superinfection and the coevolution of parasite virulence and host recovery	Kada S. et al.	22
An examination of Dscam1 in the light of immunity, fecundity and behaviour	Peuß R. et al.	22
Ecological factors dictate the degeneration of induced immunity in the	Matao O at al	00
spider mite Tetranychus urticae	Matos G. et al.	23
Endosymbiont-mediated immune protection in a novel host species Symposium 13. Evolutionary analysis of ecological communities	Paulo T. et al.	23
Symposium 15. Evolutionary analysis of ecological communities		
Local specialists and global generalists : Understanding parasite		
diversification patterns within host communities at different spatial scales	McCoy K.	24
Linking morphologic and genetic divergence with host use in the tropical tick	Meeby R.	27
complex, Ornithodoros capensis sensu lato	Dupraz M. et al.	24
Phylogenetic patterns in species diversity	Lewitus E. et al.	25
· · · · · · · · · · · · · · · · · · ·		
Resistance to invasive congener's pollen in Japanese dandelion:		
Reproductive character displacement in response to biological invasion?	Kyogoku D.	25
Correlation of the intraspecific diversity patterns of benthic invertebrates	, ,	
with the microbial community functioning	Vasileiadou K. et al.	26
Interlopers or welcome guests? The role of non-protective invertebrates in		
an ant-plant mutualism	Chanam J. et al.	26
Interspecific interactions influence contrasting spatial genetic structures in		
two closely related damselfly species	Kahilainen A. et al.	27
Invasion triggers rapid phenotypic evolution in a native freshwater snail		
species	Chapuis E. et al.	27
Spatial genetic structures of strongly interacting species at different trophic		
levels in a fragmented landscape	Nair A. et al.	28
Viral diversity in ant communities	Fürst M. et al.	29
From mutualism to parasitism: Variation of toxicity in communities of		
mimetic butterflies	Arias M. et al.	29
Ploidy level and genome size influence angiosperm species distributions		00
under different nutrient conditions	Guignard M. et al.	30
I proveling the role of heat traits in predicting heat perceits assembles		20
Unraveling the role of host traits in predicting host parasite assemblages	Hayward A. et al.	30
The distribution and phylogeography of an important pollinator parasite	Schmid-Hempel R. et al.	31
Rapid evolution alters natural microbial community structure	Gomez P. et al.	31
	Comez r : et al.	51
Agricultural landscapes influence the repartition of traits on carabid beetles	Marie A. et al.	32
Phylogeography and taxonomy of Arabidopsis halleri across its distributional		02
range	Fuxová G. et al.	32
Evolution of a community of a multiple-strain tick-borne pathogen during 11		
years: Is fitness a good predictor?	Durand J. et al.	33
The Role of Plant-Microbe-Insect interactions in driving rapid evolution		
using Medicago polymorpha as an experimental system	Jack C. et al.	33
Symposium 14. Experimental evolution and ecology of (microbial and		
Host-microbiota interactions during adaptation to different nutritional		
conditions in Drosophila melanogaster	Erkosar B. et al.	34

Can different biocontrol agents be combined to develop evolutionary-proof		
biocontrol method against Ralstonia solanacearum plant pathogen? More than just density: Different paths to the evolution of larval competitive	Wei Z. et al.	34
ability	Sarangi M.	35
Shape matters: Lifecycle of cooperative patches promotes cooperation in	Micovia D. et al	35
bulky populations Co-evolutionary constraint after the true domestication of fungal crops by	Misevic D. et al.	30
attine ants	Shik J. et al.	36
The simplicity and complexity of the attine ant gut microbiota: Living within a	Concurtaio D. et al.	07
symbiotic network Host genotype × environment interaction change the microbial community	Sapountzis P. et al.	37
of Daphnia	Pichon S. et al.	37
Chemical warfare no solution against parasite attack: Tribolium castaneum vs. Beauveria bassiana	Rafaluk C. et al.	38
Heterosis in yeast increases with parental divergence and environmental	Raialuk C. et al.	30
stress	Bernardes J.	38
Stability and variation in the gut and fungus comb microbial communities in fungus-growing termites	Otani S. et al.	39
Eco-evolutionary dynamics of a predator-prey system provide insight into	Otani O. et al.	53
the paradox of enrichment	Ayan G. et al.	39
Predation and the evolution of multicellular groups in algae Insects' detoxification mechanisms as target for antagonistic filamentous	Kapsetaki S.	40
fungi?	Trienens M. et al.	40
The genotypic view of social interactions in multispecies microbial		
communities Eco-evolutionary dynamics of Pepino mosaic virus	Mitri S. et al. Gomez P. et al.	41 41
The role of parasitims and environmental change in ecosystems during	Comez r . et al.	71
sticklebacks adaptive radiations	Anaya-Rojas J. et al.	42
Genome streamlining in bacteria evolving under high predation pressure	Baumgartner M. et al.	42
The genomic basis of phenotype variation in social myxobacteria isolated	Baamgarthor M. or al.	12
from nature	Wielgoss S. et al.	43
The outcomes of bacteriophage selection on the evolution of virulence in		
	Örmälä-Odegrip A et al	43
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding	Örmälä-Odegrip A. et al.	43
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen	Örmälä-Odegrip A. et al. Jacquet M. et al.	43 44
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test	Jacquet M. et al.	44
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within	Jacquet M. et al. Puurtinen M. et al.	
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations	Jacquet M. et al.	44
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al.	44 45 46
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al.	44 45 46 46
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al.	44 45 46
 Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate 	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al.	44 45 46 46 47
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al.	44 45 46 46
 Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary 	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al.	44 45 46 46 47 47 48
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al.	44 45 46 46 47 47
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al.	44 45 46 47 47 48 48
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al.	44 45 46 46 47 47 48
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis)	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al.	44 45 46 47 47 48 48
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al.	44 45 46 47 47 48 48
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus Selection and differentially expressed genes governing mixed mating in a	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al. Finck J. et al. van der Meer S. et al.	44 45 46 46 47 47 48 48 48 49 49
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al. Finck J. et al.	44 45 46 46 47 47 48 48 48 48
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus Selection and differentially expressed genes governing mixed mating in a plant Molecular evolution of freshwater snails with contrasted mating systems	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al. Finck J. et al. van der Meer S. et al.	44 45 46 46 47 47 48 48 48 49 49
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus Selection and differentially expressed genes governing mixed mating in a plant Molecular evolution of freshwater snails with contrasted mating systems The role of geographical and demographic factors in shaping floral morph	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al. Finck J. et al. van der Meer S. et al. Strandh M. et al.	44 45 46 47 47 48 48 48 49 49 49 50
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus Selection and differentially expressed genes governing mixed mating in a plant Molecular evolution of freshwater snails with contrasted mating systems	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al. Finck J. et al. van der Meer S. et al. Strandh M. et al.	44 45 46 47 47 48 48 48 49 49 49 50
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus Selection and differentially expressed genes governing mixed mating in a plant Molecular evolution of freshwater snails with contrasted mating systems The role of geographical and demographic factors in shaping floral morph frequencies in the tristylous Lythrum salicaria at the southern edge of distribution The evolution of reproductive isolation between two hybridizing dungfly	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al. Finck J. et al. van der Meer S. et al. Strandh M. et al. Burgarella C. et al. Costa J. et al.	44 45 46 47 47 48 48 48 49 49 49 50 50 50
Klebsiella pneumoniae Acquired immunity and cross-immunity effects on systemic and co-feeding transmission of a multi-strain tick-borne pathogen Symposium 6. Mating system evolution: unifying theory and test Evolution of male and female choice in promiscuous mating systems Disassortative mating in plants: Paternity analysis of floral morphs within experimental populations A novel cost to sex allocation in the mostly monandrous wasp, Nasonia vitripennis Paradox of high outcrossing and no selfing syndrome despite no inbreeding depression after a loss of self-incompatibility Beauty in the eyes of the beholders: Color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata) The repeatability of mating failure in a polyandrous insect Evolution of female multiple mating and sperm competition: Co-evolutionary feed-backs between female and male traits The impact of cuticular hydrocarbon profiles on mate attraction and reproductive isolation in two grasshopper species (Chorthippus biguttulus and C. mollis) Are females always better? Sex ratio variation and population genetic diversity affect the female advantage in gynodioecious Plantago coronopus Selection and differentially expressed genes governing mixed mating in a plant Molecular evolution of freshwater snails with contrasted mating systems The role of geographical and demographic factors in shaping floral morph frequencies in the tristylous Lythrum salicaria at the southern edge of distribution	Jacquet M. et al. Puurtinen M. et al. Arroyo J. et al. Boulton R. et al. Voillemot M. et al. Sandkam B. et al. Greenway G. et al. Bocedi G. et al. Finck J. et al. van der Meer S. et al. Strandh M. et al. Burgarella C. et al.	44 45 46 47 47 48 48 48 49 49 50 50

Polyandry rates and reproductive success in a nuptial gift-giving dance fly		
Rhamphomyia longicauda	Herridge E. et al.	52
Artificial selection in the context of contrasted mating system	Noël E. et al.	53
Bottom-up effects of selection locally on outcross siring success shape the	Contac del Dianas I, et el	50
regional population genetic structure of an annual plant	Santos del Blanco L. et al.	53
Frequency and life-history consequences of mixed mating in the freshwater		E A
snail Radix balthica	Bürkli A. et al. Mousset M. et al.	54 54
Inbreeding depression and selective history in Noccaea caerulescens Female mate sampling strategy based on acoustic signals of a field cricket:	Moussel M. et al.	54
Implications for sexual selection	Nandi D. et al.	55
To each according to her colour? Non-random male courtship effort in a	Naliu D. et al.	55
viviparous fish with traditional sexual roles	Mendez Janovitz M. et al.	55
Measuring sexual selection: A more holistic model of reproductive life	Mendez Janovitz M. et al.	55
histories	Henshaw J. et al.	56
Experimental evolution under manipulated sex ratios alters mating	Tiensnaw 5. et al.	50
behaviour in two sex role reversed beetle species	Fritzsche K. et al.	56
Reproduction in social insects: What can superorganisms teach us about		00
mating system evolution?	Helanterä H.	57
A Drosophila-based screen for genes important to reproductive regulation in		01
social insects	Thompson G. et al.	57
Contrasting patterns of inbreeding depression and hybrid vigor between		01
small and large populations of Daphnia magna	Haag C. et al.	58
Paternal care and paternity revisited	Schroeder J. et al.	58
A protected polymorphism for shell colour in a natural population of a		00
marine snail	Galindo J. et al.	59
Condition-dependent outcrossing in the filamentous fungus Aspergillus		
nidulans	Rode N. et al.	59
Does self-fertilization enhance or reduce response to selection ? Empirical		
test in a freshwater snail	Coutellec M. et al.	60
Symposium 8. Cooperation without kinship: from genomes to mutuali		
Cooperative blood-feeding explains feeding aggregations in Phlebotomine		
Sandflies	Tripet F. et al.	61
Transitioning from pathogen to mutualist: The evolution of vertical	· · ·	
transmission	Drown D. et al.	61
	Drown D. et al.	61
transmission	Drown D. et al. Oettler J. et al.	61 62
transmission Tripartite network of an ant host, transposable elements and intracellular		
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium	Oettler J. et al. Li E. et al.	62 62
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species?	Oettler J. et al. Li E. et al. Quickfall C.	62 62 63
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium	Oettler J. et al. Li E. et al.	62 62
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al.	62 62 63 63
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species?	Oettler J. et al. Li E. et al. Quickfall C.	62 62 63
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al.	62 62 63 63
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H.	62 62 63 63 64
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al.	62 62 63 63
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al.	62 62 63 63 64 64
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al.	62 63 63 64 64 65
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al.	62 62 63 63 64 64
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al.	62 63 63 64 64 64 65 65
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al.	62 63 63 64 64 65
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al.	62 63 63 64 64 65 65 65 65
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al.	62 63 63 64 64 64 65 65
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 65
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological specifies	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological specents Genital form and the evolution of reinforcement in Littorininae	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 65
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological spec Genital form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole-	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66 66
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological spe Genital form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66 66 66 69 69
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological spe Genital form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem Genetics of Jaw Divergence in a Trophically Polymorphic Cichlid Fish	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66 66 66 66 66 69 70
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological spet Genital form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem Genetics of Jaw Divergence in a Trophically Polymorphic Cichlid Fish Meiotic drive and inter-population incompatibilites	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66 66 66 69 69
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological spet Genital form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem Genetics of Jaw Divergence in a Trophically Polymorphic Cichlid Fish Meiotic drive and inter-population incompatibilites Adaptation and selection processes at the invasion front of a globally	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66 66 66 66 69 70 70
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological spe Genital form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem Genetics of Jaw Divergence in a Trophically Polymorphic Cichlid Fish Meiotic drive and inter-population incompatibilites Adaptation and selection processes at the invasion front of a globally expanding vertebrate	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66 66 66 66 66 69 70
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological specential form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem Genetics of Jaw Divergence in a Trophically Polymorphic Cichlid Fish Meiotic drive and inter-population incompatibilites Adaptation and selection processes at the invasion front of a globally expanding vertebrate Variability in the incidence of hybrid seed failure within and among wild	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al. Ciation Hollander J. Guggisberg A. et al. Yerspoor R. et al. Kalchhauser I. et al.	62 63 63 64 64 65 65 65 66 66 66 66 69 70 70 70 71
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological spe Genital form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem Genetics of Jaw Divergence in a Trophically Polymorphic Cichlid Fish Meiotic drive and inter-population incompatibilites Adaptation and selection processes at the invasion front of a globally expanding vertebrate Variability in the incidence of hybrid seed failure within and among wild tomato species	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al. Suchan T. et al.	62 63 63 64 64 65 65 65 66 66 66 66 66 69 70 70
transmission Tripartite network of an ant host, transposable elements and intracellular bacteria Co-evolution with natural enemies promotes probiotic activity in a plant- associated bacterium Can Altruism Evolve Between Species? Diversity of moral strategies in human reputation-based cooperation Pattern and process in the evolutionary history of the mycorrhizal symbiosis Birds of almost the same feather flock together: Phenotypic clumping characterises the composition of mixed-species bird flocks, worldwide The implications of Termitomyces domestication for gut microbiome function in fungus-growing termites The bacterial network: Cooperative nutrient exchange via nanotubes Negotiation and appeasement are more effective drivers of sociality than kin selection Insights into the asymmetrical nature of nursery pollination mutualisms: The Trollius-Chiastocheta interaction as a case study Amphimax 412 Symposium 33. The molecular basis of adaptation and ecological specential form and the evolution of reinforcement in Littorininae Edaphic adaptation in Arabidopsis: A genomic perspective on the calcicole- calcifuge problem Genetics of Jaw Divergence in a Trophically Polymorphic Cichlid Fish Meiotic drive and inter-population incompatibilites Adaptation and selection processes at the invasion front of a globally expanding vertebrate Variability in the incidence of hybrid seed failure within and among wild	Oettler J. et al. Li E. et al. Quickfall C. Egas M. et al. Maherali H. Sridhar H. et al. Poulsen M. et al. Shitut S. et al. Quiñones A. et al. Suchan T. et al. Ciation Hollander J. Guggisberg A. et al. Yerspoor R. et al. Kalchhauser I. et al.	62 63 63 64 64 65 65 65 66 66 66 66 69 70 70 70 71

Identifying the genetic basis of ecologically important traits in Nigotiana		
Identifying the genetic basis of ecologically important traits in Nicotiana attenuata using advanced-inter crossing recombinant inbred lines (AI-RIL)	Shuqing X. et al.	72
From whole-genome scans for divergence to the discovery of speciation		12
genes in oaks	Leroy T. et al.	73
Coupling genomics with experiments to study divergence-with-gene-flow in	•	
trees	Bresadola L. et al.	73
Differential gene expression according to race and host plant in the pea		
aphid	Eyres I. et al.	74
Comparative and evolutionary studies of lysosomal glycosidases in the		- 4
liver/hepatopancreas of different aquatic organisms.	Vdovichenko E. et al.	74
The Effects of Pollination and Range Shifts on the Diversification of the Tribe Antirrhineae	Ogutcen E. et al.	75
A colourful genomic landscape: Patterns of gene flow in an Australian		75
colour polymorphic finch	Bolton P. et al.	75
	2010111101011	
Selection on floral volatiles in sister species of Alpine orchids (Gymnadenia)	Byers K. et al.	76
Evolutionary consequences of the hybridization on the genetic architecture		
in two close species of Silene (Caryophyllaceae)	Baena-Diaz F. et al.	76
Metabolic adaptations to decomposition of plant biomass in fungus-growing		
termite symbionts	da Costa R. et al.	77
Alternative splicing in candidate genes involved in diapause and cold		
acclimation in northern Drosophila montana	Kankare M. et al.	77
The evolution and development of petal spots in the Angiosperms Genetics of Cold Aclimation in Drosophila montana	Mellers G. et al.	78 78
Whole transcriptome analysis on three Cuban Anolis lizard species	Vigoder F. et al.	10
adapting to different thermal microhabitats	Akashi H. et al.	79
		10
Specialization to the host plant in Lepidoptera pests: Pattern and process	Orsucci M. et al.	79
Post-mating pre-zygotic barriers and Haldane's rule	Bundus J. et al.	80
Feeling the pressure: Extremophilic adaptation of hsp90 and hsp70 heat-		
shock proteins in deep-sea amphipod species	Ritchie H. et al.	80
Bacterial microbiota associated with Cottus (Pisces) across a secondary		
contact zone	Ellendt S. et al.	81
Developmental plasticity of a key evolutionary trait in East African cichlids – insights in evolutionary mechanisms that shaped these cichlids' adaptive		
radiations	Schneider R. et al.	81
Genomic analyses of two differentially migrating bird subspecies	Lundberg M. et al.	82
Comparative population genomics in three species of Chorthippus		02
grasshoppers	Mayer F. et al.	82
The role of visual adaptation in cichlid fish speciation	Wright S. et al.	83
Genomic heterogeneity of species diversification in an avian superspecies		
complex	Poelstra J. et al.	83
Association between genotype and plumage pigmentation in the Tytonidae:		
Candidate gene approach	Uva V. et al.	84
Gain and loss of GDF6 expression and the evolution of skeletal traits	Indjeian V. et al.	84
Ecological adaptation of a desert-specialist, on the edge of life Effects of genetic divergence between two Arabidopsis lyrata populations	Serén N. et al.	85
on germination traits	Hämälä T. et al.	85
Evolution of antifreeze glycoprotein (AFGP) in Antarctic icefish	Hamala F. Ot al.	00
(notothenioids)	Zubler M.	86
Intraspecific diversity and incipient speciation in a planktonic unicellular		
eukaryote	Le Gac M. et al.	86
Speciation, introgression and molecular evolution in the carnivorous pitcher		
plant Nepenthes	Scharmann M. et al.	87
Anthropogenic pressure and introgression in malaria vectors	Clarkson C.	87
Function and evolutionary consequences of Diplostigmaty	Kissling J.	88
Divergent selection and reduced dispersal drive phenotypic diversification at	Mila B. et al.	88
a very small spatial scale in an island bird	ivilla D. Et al.	00
Amphimax 413 Sumposium 24 Charting the genemic landscene of enocietion		

Symposium 34. Charting the genomic landscape of speciation

Differentiation in the tomato red spider mite: A novel method to study the genetics of hybrid lethality by genotyping viable and inviable hybrids

Knegt B. et al.

Cryptic species, ecomorphs and GFP/GFP-like profiles in the cnidarian Anemonia viridis	Mallien C. et al.	89
Genome-wide divergence among population pairs of parasitic and non-		
parasitic lampreys	Rougemont Q. et al.	90
Mosaic hybridization in two species of the Jaera albifrons complex	Ribardière A. et al.	90
Speciation genomics in European columbines (Aquilegia)	Akoz G. et al.	91
The fragmented distribution of the Apollo butterflies in Sierra Nevada		
(Spain): How isolated are they?	Mira O. et al.	91
The Footprint of Adaptive Introgression After Secondary Contact	Setter D. et al.	92
Genomic evolution at the tip of the cichlid phylogenetic bush	Gante H. et al.	92
Population Genomics of Two Teleogryllus Cricket Species that Provide a	Marca Datal	00
Rare Exception to Haldane's Rule	Moran P. et al.	93
Is selection on habitat gradients correlated with phenotypic and genomic differentiation in cichlid fish populations?	ven Bijagel I et el	94
An insight into Lacertid speciation through the comparative genomics of L.	van Rijssel J. et al.	94
viridis and L. bilineata	Kolora R. et al.	94
The genomic landscape of speciation in a classic "Great Speciator": the	Rolora R. et al.	94
Myzomela honeyeaters	Sardell J. et al.	95
Is massive introgression limited to the mitogenome? Lessons from whole-	Saldeli J. et al.	90
genome sequencing in hares	Seixas F. et al.	95
Iberian Pied flycatchers: Differentiation history and local adaptation	Warmuth V. et al.	96
	Wannun V. et al.	30
Identification of hybrid male-sterility genes in sibling species of Drosophila	Liénard M. et al.	96
Past episodes of local gene flow in F1 dominated hybrid zones	Christe C. et al.	97
Secondary contact, reproductive barriers, and introgression: Habitat	onnate of et al.	51
alterations influencing the evolutionary history of two subterranean rodent		
species (Rodentia: Ctenomyidae)	Lopes C. et al.	97
		51
New insights into European white oaks evolution of reproductive isolation		
from heterogeneous divergence levels across genomic regions	Garnier-Gere P. et al.	98
Anthropogenic secondary-contact of cryptic penguin species	Grosser S. et al.	98
Mitochondrial and nuclear discordance in a widespread passerine: Genomic		
signatures of natural selection and local adaptation	Morales H. et al.	99
Genome Wide Association Studies on a sexually selected trait in two		
closely related passerines	McFarlane E. et al.	99
Using genome-wide data to study the demographic history of two parapatric		
field cricket species: Approximate Bayesian Computation and analysis of		
the allele frequency spectrum	Blankers T. et al.	100
Genomic atolls of differentiation in coral reef fishes (Hypoplectrus spp,		
Serranidae)	Puebla O. et al.	100
Speciation reversal in ravens: Genomic evidence of the collapse of cryptic		
lineages in North America	Kearns A. et al.	101
Fuzzy species limits in the Eunicella gorgonians : Interaction with adaptation		101
and symbiosis	Aurelle D. et al.	101
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation	Aurelle D. et al.	
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual	Aurelle D. et al.	
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system	Aurelle D. et al. Riesch R. et al.	
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under		101 102
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection	Riesch R. et al. Ponkshe A. et al.	101 102 102
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids	Riesch R. et al.	101 102
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New	Riesch R. et al. Ponkshe A. et al. Twyman H.	101 102 102 103
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae)	Riesch R. et al. Ponkshe A. et al.	101 102 102
 and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a 	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al.	101 102 102 103 103
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan	Riesch R. et al. Ponkshe A. et al. Twyman H.	101 102 102 103
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al.	101 102 102 103 103 104
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex determination and mitochondrial inheritance in Mytilus?	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al. Burzynski A. et al.	101 102 102 103 103 104 104
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex determination and mitochondrial inheritance in Mytilus? The evolution of sex-biased gene expression in Mercurialis	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al.	101 102 102 103 103 104
 and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex determination and mitochondrial inheritance in Mytilus? The evolution of sex-biased gene expression in Mercurialis Purging of mutations via sexual selection is dependent upon which sex 	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al. Burzynski A. et al. Toups M. et al.	101 102 102 103 103 104 104 105
 and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex determination and mitochondrial inheritance in Mytilus? The evolution of sex-biased gene expression in Mercurialis Purging of mutations via sexual selection is dependent upon which sex chooses a mate 	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al. Burzynski A. et al. Toups M. et al. Mautz B. et al.	101 102 102 103 103 104 104 105 105
and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex determination and mitochondrial inheritance in Mytilus? The evolution of sex-biased gene expression in Mercurialis Purging of mutations via sexual selection is dependent upon which sex chooses a mate Mutation, Condition, and the Evolution of Longevity	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al. Burzynski A. et al. Toups M. et al. Mautz B. et al. Kimber C. et al.	101 102 102 103 103 104 104 105 105 106
 and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex determination and mitochondrial inheritance in Mytilus? The evolution of sex-biased gene expression in Mercurialis Purging of mutations via sexual selection is dependent upon which sex chooses a mate 	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al. Burzynski A. et al. Toups M. et al. Mautz B. et al.	101 102 102 103 103 104 104 105 105
 and symbiosis Symposium 5. Novel insights in the genetics of sex-specific variation Reproductive isolation and sexual dimorphism driven by natural and sexual selection on a polygenic communication system Joint effects of history and genetics in maintaining genetic variation under sexual selection A genetic correlate of red ketocarotenoid coloration in ploceids Opsin expression reveals sexual dimorphism in the visual system of New World warblers (Birds, Parulidae) Costs of reproduction explain a gradual change from a male-biased to a female-biased sex difference in human lifespan Is the expression of specific mitochondrial ORFs involved in sex determination and mitochondrial inheritance in Mytilus? The evolution of sex-biased gene expression in Mercurialis Purging of mutations via sexual selection is dependent upon which sex chooses a mate Mutation, Condition, and the Evolution of Longevity 	Riesch R. et al. Ponkshe A. et al. Twyman H. Bloch N. et al. Bolund E. et al. Burzynski A. et al. Toups M. et al. Mautz B. et al. Kimber C. et al.	101 102 102 103 103 104 104 105 105 106

Nature via nurture of carotenoid colour evolution: The metabolic conversion of yellow to red pigments is controlled by a cytochrome P450 in widowbirds		
and bishops (Euplectes)	Andersson S. et al.	108
Symposium 27. Ecology and evolution of floral signals		
Comparison of genetic background of flowering time variation among Lotus japonicus in Japan based on whole-genome sequence	Wakabayashi T. et al.	ext 109
(Epi)genetics and ecology of floral colour polymorphisms in the alpine	Wakabayashi T. et al.	67(103
orchid Gymnadenia (=Nigritella) rhellicani	Kellenberger R. et al.	ext 109
Integrating phylogenetics, ecology and evo-devo to understand a key		
innovation: Floral nectar spurs in Linaria and related genera	Glover B. et al.	ext 110
Experimental tests of the effect of flower architecture, fragrance and visual stimuli on the pollination of a dimorphic plant	Arroyo J. et al.	ext 110
Amphimax 414	Anoyo o. et al.	CALITO
Symposium 1. Ecology and the Evolution of Sex		
The effect of sex on the repeatability of evolution	Lachapelle J. et al.	112
Genomic evidence for ameiotic evolution and adaptation without sex in an		
animal lineage, the bdelloid rotifer Adineta vaga	Van Doninck K. et al.	112
Inventory of maintic games in New Zealand stick insect Olitarshus haskeri		
Inventory of meiotic genes in New Zealand stick insect Clitarchus hookeri (Phasmatodea) and their expression in sexual and asexual females	Wu C. et al.	113
Fitness consequences of sexual and parthenogenetic reproduction in the		110
Australian spiny leaf insect, Extatosoma tiaratum	Alavi Y. et al.	113
Genetic diversity and population structure in thrips with different		
reproductive modes	Dumas Z. et al.	114
Changes in sexual reproduction in response to human-induced eutrophication in a cladoceran community	Vehmaa A. et al.	115
A breakdown of doubly uniparental inheritance (DUI) system in hybridisation		115
area of European Mytilus edulis and Mytilus trossulus	Śmietanka B. et al.	115
The tastier sex? Herbivore preference varies among the habitats of		
Mercurialis perennis	Rubinjoni L. et al.	116
Male reproductive success and indirect genetic benefits in the Italian treefrog (Hyla intermedia)	Botto V. et al.	116
Is there an opportunity for sexual selection to aid adaptation and does it	Bollo V. et al.	110
increase in novel environments?	Martinossi-Allibert I. et al.	117
Genomic consequences of long-term parthenogenesis in oribatid mites	Brandt A.	117
Hybridisation patterns between sexual and asexual species	Freitas S. et al.	118
Female genitalia evolves slower than male genitalia in a coevolutionary scenario in a clade of Neotropical stink bugs	Genevcius B. et al.	118
Sex related transcriptome differences of the protogynous hermaphrodite red		110
porgy, Pagrus pagrus	Tsakogiannis A. et al.	119
Evolving reproduction: From sexual genomic recombination to asexual		
genome stability	Nobre M. et al.	119
Ecological differentiation and the maintenance of sex Sex, salamanders and dimorphism	Meirmans S. Kupfer A. et al.	120 120
Symposium 3. The Evolution of Sex Chromosomes	Rupiel A. et al.	120
Evolutionary genomics of sex determination in the common frog Rana		
temporaria	Ma W. et al.	121
Faster-Z evolution of gene expression in birds	Dean R. et al.	121
Testing hypothesis of sex-chromosome degeneration using bryophytes as a model system	Jesson L. et al.	122
Sex-chromosome differentiation and 'sexual races' in the common frog	Jesson L. et al.	122
(Rana temporaria)	Rodrigues N. et al.	122
Suppression of X chromosomal gene expression in the male germline of		
Drosophila melanogaster	Argyridou E. et al.	123
Extreme X-chromosomal enrichment of genes with male-biased expression in the Drosophila melanogaster brain	Huylmans A. et al.	123
Sex determination in Silene: Male and female heterogamety	Janousek B. et al.	123
Transition in sexual system and sex chromosome evolution in the tadpole		
shrimp Triops cancriformis	Gomez A. et al.	124
Unique evolutionary features of the pseudoautosomal region of the		
Ectocarpus UV sex chromosomes	Lipinska A. et al.	125
Partial inactivation of the chicken Z chromosome is a response to selection for dosage compensation	Zimmer F.	125
accage compensation		120

Characterization of Northern pike (Esox lucius, Esociformes, Teleosts)		
master sex determining gene and evolution of sex determination in		
Esociformes	Pan Q. et al.	126
Modeling the evolution of recombination in sex chromosomes	Cavoto E. et al.	126
Evolution of the guppy sex chromosomes	Wright A. et al.	127
Does female meiotic drive affect the evolution of multiple sex chromosomes		407
in amniote vertebrates?	Johnson Pokorna M. et al.	127
Comparisons of introgression at sex-linked vs. autosomal markers in	Oto a she Marstard	400
secondary hybrid zones of two anuran systems with XY-sex determination	Stoeck M. et al.	128
The genomics and genetics of male ornaments and sex determination		400
supergene in the Trinidadian guppy Poecilia reticulata	Chan Y. et al.	128
Champleone out of diaguines Evolution of kernetures and any shreet server	Devetees Mastel	100
Chameleons out of disguise: Evolution of karyotypes and sex chromosomes	Rovatsos M. et al.	129
Sex-chromosome homomorphy in Palearctic tree frogs proceeds from both	Dufroence C et al	100
turnovers and X-Y recombination	Dufresnes C. et al.	129
Sequence and structural evolution of the feminizing X chromosome of	Pouroot D. et al	120
African pygmy mice (Mus minutoides).	Boursot P. et al.	130
Developing sex markers for studying birds, sex ratios and chromosome	Dawson D. at al	120
rearrangements	Dawson D. et al.	130
Amphipôle 300		
Symposium 15. Evolution of genomes		
Investigation of selection patterns across the New Zealand Giant Weta		
genome, using comparative transcriptomics	Twort V. et al.	134
Comparative transcriptomics reveals the modular organisation of ant		
phenotypic traits	Helanterä H. et al.	134
Reference genome, population genetics and population genomics of wild		
falcons	Zhan X. et al.	135
Hidden giant viruses in the public databases	Sharma V. et al.	135
The genome of Gonium pectorale reveals early genetic co-option during the		
evolution of multicellularity	Hanschen E. et al.	136
Analysis of mtDNA heteroplasmy in hermaphroditic mussels. First case of		
doubly uniparental inheritance without dioecy?	Przyłucka A. et al.	136
Bgee, a database for the study of gene expression evolution	Robinson-Rechavi M. et al.	137
Diversity in the genus Begonia	Emelianova K.	137
Dynamics of copy number variation in eight host races of the pea aphid		
species complex	Duvaux L. et al.	138
		400
Evolution of an endosymbiont genome associated with host dependency	Kampfraath A. et al.	138
Evolution of bow-tie architectures in biology	Friedlander T. et al.	139
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks	Friedlander T. et al. Rünneburger E.	139 139
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates	Friedlander T. et al.	139
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al.	139 139 140
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans	Friedlander T. et al. Rünneburger E.	139 139
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al.	139 139 140 140
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al.	139 139 140
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora,	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C.	139 139 140 140 141
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al.	139 139 140 140
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al.	139 139 140 140 141 141
 Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans 	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al.	139 139 140 140 141 141 141
 Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects 	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al.	139 139 140 140 141 141 141 142 142
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al.	139 139 140 140 141 141 141
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al.	139 139 140 140 141 141 141 142 142 143
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al.	139 139 140 140 141 141 141 142 142 143 143
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al.	139 139 140 140 141 141 141 142 142 143
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al. Salazar Jaramillo L. et al. Tyukmaeva V. et al.	139 139 140 140 141 141 141 142 142 143 143 144
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al.	139 139 140 140 141 141 141 142 142 143 143
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila Mussels from the Chilean Pacific coast: Preliminary transcriptomic data Recombination hotspots and genomic patterns of horizontal gene transfer in	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al. Salazar Jaramillo L. et al. Tyukmaeva V. et al.	139 139 140 140 141 141 141 142 142 143 143 144 144
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila Mussels from the Chilean Pacific coast: Preliminary transcriptomic data Recombination hotspots and genomic patterns of horizontal gene transfer in bacteria	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al. Salazar Jaramillo L. et al. Tyukmaeva V. et al.	139 139 140 140 141 141 141 142 142 143 143 144
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila Mussels from the Chilean Pacific coast: Preliminary transcriptomic data Recombination hotspots and genomic patterns of horizontal gene transfer in bacteria Reptilian Transcriptomes v2.0: An extensive resource for Sauropsida	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al. Salazar Jaramillo L. et al. Tyukmaeva V. et al. Lubośny M. et al.	139 139 140 140 141 141 141 142 142 143 143 144 144 145
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila Mussels from the Chilean Pacific coast: Preliminary transcriptomic data Recombination hotspots and genomic patterns of horizontal gene transfer in bacteria Reptilian Transcriptomes v2.0: An extensive resource for Sauropsida genomics and transcriptomics	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al. Salazar Jaramillo L. et al. Tyukmaeva V. et al.	139 139 140 140 141 141 141 142 142 143 143 144 144
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila Mussels from the Chilean Pacific coast: Preliminary transcriptomic data Recombination hotspots and genomic patterns of horizontal gene transfer in bacteria Reptilian Transcriptomes v2.0: An extensive resource for Sauropsida genomics and transcriptomics Sifting through tangled trees: A particle-filtering method for Bayesian	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al. Salazar Jaramillo L. et al. Tyukmaeva V. et al. Lubośny M. et al. Earle S. et al.	139 139 140 140 141 141 141 142 142 143 143 144 144 144 145 145
Evolution of bow-tie architectures in biology Evolution of canalization in gene regulatory networks Evolution of tissue specificity of protein coding genes in vertebrates Evolutionary analysis linked to epigenetic modifications in the largest transcription factor family of humans Exchange of Genetic Material between Non-Recombining Sequences on a Genomic Scale Exploring the genome of Sparidae: Linkage mapping in common pandora, Pagellus erythrinus Genetic basis of eye and face shape differences in Drosophila mauritiana and Drosophila simulans Genome evolution during the radiation of Timema stick insects Genome evolution of Burkholderia leaf nodule symbionts Genomic consequences of hybridization and the loss of meiotic recombination in Root-knot nematodes Genomic variation in the virilis group of Drosophila Mussels from the Chilean Pacific coast: Preliminary transcriptomic data Recombination hotspots and genomic patterns of horizontal gene transfer in bacteria Reptilian Transcriptomes v2.0: An extensive resource for Sauropsida genomics and transcriptomics	Friedlander T. et al. Rünneburger E. Kryuchkova N. et al. Kapopoulou A. et al. Vogl C. Manousaki T. et al. Holzem M. et al. Soria-Carrasco V. et al. Pinto Carbó M. et al. Salazar Jaramillo L. et al. Tyukmaeva V. et al. Lubośny M. et al.	139 139 140 140 141 141 141 142 142 143 143 144 144 145

The second second for the second s		
The consequences of mating system and population dynamics on genome		
evolution: A comparative study of inbreeding and outcrossing sister species		
of the spider genus Stegodyphus	Settepani V. et al.	147
The evolution of untranslated regions of mRNAs in primates	Finci I. et al.	148
The genome sequence of the corn snake (Pantherophis guttatus), a		
valuable resource for EvoDevo studies in squamates	Ullate Agote A. et al.	148
Weak conservation of pathways in mouse and human aging tissues	Komljenovic A. et al.	149
You are what you eat – Can selective advantages explain the AT-bias of		
endosymbiotic genomes?	Dietel A. et al.	149
Symposium 20. Genomics of Local Adaptation		
A genomic perspective on locally adapted coastal cod populations	Barth J. et al.	150
Adaptive genetic diversity of Apis mellifera populations using whole-genome		
sequence data	Parejo M. et al.	150
Characterizing the architecture of gene expression regulation in the		
threespine stickleback, Gasterosteus aculeatus	Pritchard V. et al.	151
Deciphering the molecular basis of a boreal adaptation: The transcriptional		
landscape of seasonal coat color change in two species of hares	Sousa Ferreira A. et al.	151
Demography and local adaptation of Rana temporaria across an		
environmental gradient	Jansen van Rensburg A. et al.	152
Detecting selection with haplotype-based methods: Benchmarking and		
application to tropical butterflies	de Cara A. et al.	152
Detecting signals of strain-specific selection in genomic sequences of		
Staphylococcus aureus	Wu C. et al.	153
Detection of locus under selection from temporal samples of partial-selfing		
populations	Navascués M. et al.	153
Divergent ecology causes within generation polygenic selection and		
ecotypic differences in American Eel (Anguilla rostrata)	Bernatchez L. et al.	154
Ecological genomics of Betula nana and Fraxinus excelsior in Europe	Borrell J. et al.	154
Ecologically driven divergence between multiple populations of the marine		
snail Littorina fabalis	Faria R. et al.	155
Evolution of convergent floral phenotypes during pollination shifts in		
Gesneriaceae: Transcriptomic evidence	Serrano M. et al.	155
Genetic architecture of morphological traits in the Mediterranean mussel		
Mytilus galloprovincialis	Polović D. et al.	156
Genetic diversity of European Pinus sylvestris populations studied with		100
exome sequencing	Tyrmi J. et al.	156
Genetic structure and signature of selection in a cyanobacterial lichen	i yiiii o. o. di.	100
symbiosis	Werth S. et al.	157
Genome-wide genetic variation in populations of Calanus finmarchicus and	Worth O. of al.	107
C. glacialis across their distributional ranges	Hoarau G. et al.	157
	Hoarad O. et al.	107
Genome-wide patterns of selection in the nematode Pristionchus pacificus	Rödelsperger C. et al.	158
Genome-wide screen for adaptive divergence between freshwater and	Rodelsperger C. et al.	100
brackish-water ecotypes of prickly sculpin (Cottus asper)	Dennenmoser S. et al.	158
Genomic changes during adaptation to a common environment in initially	Dennenmoser S. et al.	100
	Saabra S. at al	150
differentiated Drosophila subobscura populations	Seabra S. et al.	159
Genomic footprint of local climate adaptation	Oppold A. et al.	159
Genomic insights into the transition from oviparity to viviparity: The case of		100
the reproductively bimodal lizard Zootoca vivipara	Cornetti L. et al.	160
Genomic response to rapid convergent evolution in wild crickets	Pascoal S. et al.	160
Genomic signature of local adaptation in Populus tremula	Wang J. et al.	161
Genomic signatures of adaptation in sticklebacks: Convergent or not?	Feulner P.	161
Genomic signatures of contrasting adaptation in cork oak populations		
across the species' range	Paulo O. et al.	162
Genomics of adaptive life history variation in Atlantic salmon	Barson N. et al.	162
Geographic variation in resistance of white spruce against spruce budworm	Parent G. et al.	163
In search for selection signatures and footprints of local adaption in a rock		
ptarmigan population in Iceland	Magnusson K. et al.	163
Landscape genomics of oaks (Quercus spp.): Adaptive genetic variation in		
candidate genes in respect to present and future climatic conditions	Rellstab C. et al.	164
Linkage disequilibrium network analysis (LDna) – an unsupervised		
approach to study genomic signatures of local adaptation	Kemppainen P. et al.	164

Microgeographic variation in tropical trees: Selection shapes intra-	Spotti L et el	165
populational divergence at hundreds of loci Reconstructing past demography from population specific FSTs	Scotti I. et al. Goudet J. et al.	165 165
Searching for signatures of selection in Iberian honey bee (Apis mellifera		
iberiensis) using whole genome sequences Selection pressures and recent adaptation in the genomes of invasive fire	Martins Henriques D. et al.	166
Selection pressures and recent adaptation in the genomes of invasive fire ants	Privman E. et al.	166
The Evolution and Divergence of the Special Homeobox Genes in Pararge		
aegeria The evolution of genomes and fitness traits in response to environmental	Livraghi L. et al.	167
change in the emerging model system Daphnia	Orsini L. et al.	167
The evolutionary challenge of climate change : Adaptive processes in the	Dratles a Martin I	400
Mediterranean red coral	Pratlong M. et al.	168
The evolutionary history of Cochlearia (Brassicaceae) in Central Europe:		
Population- and phylogenomics of a cold relic in a warming world	Koch M. et al.	168
The genome-wide landscape of population genetic variation in brown rat (Rattus norvegicus) populations	Gavan M. et al.	169
The genomic basis of colour dimorphism and cold adaptations in a seabird Using a landscape genomic analysis to detect selection by climate in natural	Tigano A. et al.	169
populations of a Mexican endemic oak, Quercus rugosa	Martins K. et al.	170
Philogeography, population structure and phenotypic variation in the wing	Damia M	474
dimorphic grasshoper Dichroplus vittatus (Orthoptera: Acrididae) Symposium 28. Variation in natural selection: patterns, causes, and co	Remis M. nsequences	171
Inference and misinference under models of Background Selection	Ewing G. et al.	172
A case of rapid postglacial speciation in the songbird genus Junco: Genome- wide divergence in SNP data suggests the role of multifarious selection	Friis G. et al.	172
		112
An approximate Bayesian estimator of allele age and selection strength	Ormond L. et al.	173
An experiment in the wild to test if stickleback males adapt their colour to the ambient light environment	Veen T. et al.	173
An unexpected oviposition preference of the common bush brown (Bicyclus		
safitza) may help to explain butterfly-host plant coevolution Assessing local adaptation in Aleppo pine by comparing molecular and	Nokelainen O. et al.	174
Assessing local adaptation in Aleppo pine by comparing molecular and phenotypic variation	Martín-Sanz R. et al.	174
Asymmetric gene flow between populations of the marine crab Liocarcinus		
depurator	Mestres F. et al.	175
Can fluctuating selection explain levels of variation in natural populations?	Novak S. et al.	175
Carry-over effects of the social environment on future divorce probability in		470
great tits Catch me if you can: Adaptation from standing genetic variation to a moving	Radersma R. et al.	176
phenotypic optimum	Matuszewski S. et al.	176
Chronology of fitness traits evolution to climate change over 100 years in	Cuopos Combronara Mastal	177
the water flea Daphnia magna Cryptic species within a cardinalfish: Evidence for ecological speciation in	Cuenca Cambronero M. et al.	177
the coral reef	Gerlach G. et al.	177
Dominance genetic variance for traits under directional selection in Drosophila serrata	Sztepanacz J. et al.	178
Effects of environmental heterogeneity on phenotypic and genetic variance	oziepanauz J. el al.	170
components in a tree swallow population	Bourret A. et al.	178
Effects of temperature dependent survival during early development on adult fitness traits	Schäfer M.	179
Empirical insights of the effects of pollen flow on the adaptive potential of		175
Fagus sylvatica populations	Gauzere J. et al.	179
Environment-dependent patterns of phenotypic integration in Aleppo pine	Climent J. et al.	180
Environment-dependent sexual selection: Bateman's parameters under		
varying levels of food availability	Chapuis E. et al.	180
Estimating Selection of Skull Shape using Geometric Morphometrics Eusociality influence on the effective population size	Damasceno E. et al. Vieira B. et al.	181 181
Evaluation of adaptive potential of the European eel population suggests a		
recovery of its genetic status	Baltazar-Soares M. et al.	182

Evolution in spatiotemporal variable metapopulations facilitates		400
performance in novel challenging conditions	Bonte D.	182
Evolution of dominance in trait under balancing selection: Polymorphic		400
mimicry as a case-study Geographically limited selection at the blood group-related gene B4gaInt2 in	Llaurens V. et al.	183
house mice is associated with gastrointestinal pathogens	Vallier M. et al.	184
Harvest induced phenotypic selection in an island moose Alces alces	valler W. et al.	104
population	Kvalnes T. et al.	184
Heterozygote deficit through time in a gene (MC1R) encoding melanin-		101
based color morphs involved in predator-prey relationships	Ducret V. et al.	185
How much can History constrain adaptive evolution? The two sides of a		
story	Fragata I. et al.	185
How much is adaptive evolution contingent on space and time? A meta-		
analysis in Drosophila subobscura	Simões P. et al.	186
How to estimate selection from evolve and resequence experiments	Bodova K. et al.	186
Latitudinal variation in temperature-stress resistance and tolerance in		
Arabidopsis lyrata	Wos G. et al.	187
Local adaptation of reproductive traits	Kvarnemo C. et al.	188
Local-scale genetics — genetic structure in natural Pinus pinaster	Dudda K. at al	400
populations at short spatial scales Long term sperm competition radically alters male success	Budde K. et al. Price T. et al.	188 189
Long-term fitness consequences of a prenatal maternal effect and their	Flice L. et al.	109
impacts on evolutionary dynamics	Pick J. et al.	189
Looking for Ecologically dependent reproductive barriers and intrinsic		100
genetic incompatibility between ecotypes of Senecio lautus	Richards T. et al.	190
Measuring constraints to cichlid diversification in small lakes	Moser F. et al.	190
Morphological adaptation in a marine-freshwater habitat transition of		
Northern Neotropical Catfishes	Sánchez-Villagra M. et al.	191
Opposite forces of selection modify local life history adaptations in insects	Keret N. et al.	191
Parallel or convergent evolution in human population genomic data revealed		
by genotype networks	Rezaee Vahdati A. et al.	192
Phenotypic population divergence of the common frog across an elevational		100
gradient in the Swiss Alps	Bachmann J. et al.	192
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive		
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan	Anzai W. et al.	193
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes?	Anzai W. et al. Kokko H. et al.	193 193
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba)	Anzai W. et al.	193
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in	Anzai W. et al. Kokko H. et al. Gaigher A. et al.	193 193 194
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation	Anzai W. et al. Kokko H. et al.	193 193
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in	Anzai W. et al. Kokko H. et al. Gaigher A. et al.	193 193 194
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al.	193 193 194 194
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al.	193 193 194 194
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al.	193 193 194 194 195
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al.	193 193 194 194 195
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T.	193 193 194 194 195 195 196
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al.	193 193 194 194 195
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al.	193 193 194 194 195 195 196
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T.	193 193 194 194 195 195 196
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al.	193 193 194 194 195 195 196 196 197
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al.	193 194 194 195 195 196 196 197 197
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)?	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J.	193 193 194 194 195 195 196 196 197
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J.	193 194 194 195 195 196 196 197 197 198
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective Evolutionary pattern of the phosphoproteome in 18 yeast species	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J.	193 194 194 195 195 196 196 197 197 197 198
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspectiv Evolutionary pattern of the phosphoproteome in 18 yeast species Convergent evolution story of β-lactamase enzyme	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J.	193 194 194 195 195 196 196 197 197 198
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective Evolutionary pattern of the phosphoproteome in 18 yeast species	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J.	193 194 194 195 195 196 196 197 197 197 198
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective Evolutionary pattern of the phosphoproteome in 18 yeast species Convergent evolution story of β-lactamase enzyme Evolutionary Origin of Antimicrobial Peptide (AMP) Resistance in Firmicutes	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J. Studer R. et al. Keshri V. et al.	193 194 194 195 195 195 196 196 197 197 197 198 198
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective Evolutionary pattern of the phosphoproteome in 18 yeast species Convergent evolution story of β-lactamase enzyme Evolutionary Origin of Antimicrobial Peptide (AMP) Resistance in Firmicutes Bacteria From positive selection in songbird MHC genes to binding properties of songbird MHC proteins	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J. e Studer R. et al.	193 194 194 195 195 195 196 196 197 197 197 198 198
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective Evolutionary pattern of the phosphoproteome in 18 yeast species Convergent evolution story of β-lactamase enzyme Evolutionary Origin of Antimicrobial Peptide (AMP) Resistance in Firmicutes Bacteria From positive selection in songbird MHC genes to binding properties of songbird MHC proteins Improving contact prediction with direct coupling analysis using secondary	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Shum P. et al. Valler J. e Studer R. et al. Keshri V. et al. Grath S. et al.	193 194 194 195 195 196 196 197 197 197 197 198 198 198 199 199 200
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective Evolutionary pattern of the phosphoproteome in 18 yeast species Convergent evolution story of β-lactamase enzyme Evolutionary Origin of Antimicrobial Peptide (AMP) Resistance in Firmicutes Bacteria From positive selection in songbird MHC genes to binding properties of songbird MHC proteins	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Postma E. et al. Waller J. Studer R. et al. Keshri V. et al.	193 194 194 195 195 195 196 196 197 197 197 197 198 199
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspectiv Evolutionary pattern of the phosphoproteome in 18 yeast species Convergent evolution story of β-lactamase enzyme Evolutionary Origin of Antimicrobial Peptide (AMP) Resistance in Firmicutes Bacteria From positive selection in songbird MHC genes to binding properties of songbird MHC proteins Improving contact prediction with direct coupling analysis using secondary structural information and amino acid properties	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Shum P. et al. Valler J. Studer R. et al. Keshri V. et al. Grath S. et al. Westerdahl H. et al.	193 194 194 195 195 195 196 196 197 197 197 198 199 199 200 200
gradient in the Swiss Alps Rapid morphological evolution related to male-male combat of invasive green anole in Ogasawara Islands, Japan Sex in space: What changes? Spatial pattern of MHC diversity in barn owl (Tyto alba) Spatial Variation in Natural Selection Determines Patterns of Divergence in an Adaptive Radiation Temporal and spatial variation in assortative mating: An example in Blue Tit Mediterranean populations The ADiv Project (Analyzing Diversification in the Agaricales, 2013-2017): Analyzing patterns of diversification in the largest group of mushroom- forming basidiomycetous fungi The role of habitat dynamics in driving diversification The role of sexual selection on a threshold trait in the black scavenger fly Sepsis thoracica Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish Variation in the strength and shape of natural selection across three centuries of human civilisation Why no stabilizing selection (in damselflies)? Symposium 30. Protein evolution: structural and functional perspective Evolutionary pattern of the phosphoproteome in 18 yeast species Convergent evolution story of β -lactamase enzyme Evolutionary Origin of Antimicrobial Peptide (AMP) Resistance in Firmicutes Bacteria From positive selection in songbird MHC genes to binding properties of songbird MHC proteins Improving contact prediction with direct coupling analysis using secondary	Anzai W. et al. Kokko H. et al. Gaigher A. et al. Walter G. et al. Fargevieille A. et al. Szarkándi J. et al. Janzen T. Busso J. et al. Shum P. et al. Shum P. et al. Valler J. e Studer R. et al. Keshri V. et al. Grath S. et al.	193 194 194 195 195 196 196 197 197 197 197 198 198 198 199 199 200

Poster session B

Thursday, August 13th 1740-1940

Génopode 2000

Genopode 2000		
Symposium 10. Adaptation in heterogeneous environments: insights		
Host specificity in ticks	Van Oosten R. et al.	1
Effects of abiotic environment on the impact of a manipulative parasite on		
his host	Labaude S. et al.	2
Resistance evolution within a spatial framework	Höckerstedt L. et al.	2
Genomic insights into the evolution of Borrelia resistance along altitudinal		
gradients in the Alps	Cornetti L. et al.	3
Genetic consequences of an extraordinary lifestyle	Andersen A. et al.	3
Mycobacterium ulcerans dynamics and virulence strongly depend on chitin		
concentration in the environment	Sanhueza D.	4
Priority effect in the competition between the intracellular pathogens		
Nosema apis and Nosema ceranae in the midgut of the honey bee (Apis	Notoopoulou M. et el	Λ
mellifera)	Natsopoulou M. et al.	4
Does recombination accelerate adaptation of RNA viruses to a local host?	Doublet V. et al.	5
Immature larvae of the eyefluke Diplostomum pseudospathaceum	Doublet V. et al.	5
enchance anti-predatory behavior of fish: Evidence supporting the		
"predation suppression" hypothesis	Gopko M. et al.	5
Adaptation of a holoparasitic plant to new hosts – genetic differentiation or	Sopro M. et al.	5
phenotypic plasticity?	Stojanova B. et al.	6
A new method to analyze the dynamics of multivariate distribution of fitness	Slojanova B. et al.	0
traits in large asexual populations: Application to the evolution of virulence-		
transmission trade-off	Anciaux Y.	6
Variation of life history traits of nematode parasites in undisturbed habitats		0
of Serbia	Jovanovic V. et al.	7
Fine-tuned, context-specific manipulation of an intermediate crustacean		1
host by its acanthocephalan parasite	Thuenken T. et al.	7
When parasites disagree: Interspecific conflict over host manipulation	Hafer N. et al.	8
Experimental evolution of the spider mite, Tetranychus urticae, on tomato		0
plants: Which traits matter in adaptation to a novel host?	Marinosci C. et al.	8
		U
Pathogen emergence and evolution in a network of wild living house mice	Liechti J. et al.	9
Multiple infections in the anther smut fungus Microbotryum	Fortuna T. et al.	9
Are parasitoids locally adapted to their hosts' endosymbionts?	Vorburger C. et al.	10
Gyrodactylus salaris transcriptome: Functional characterization and analysis		
in relation to adaptations to parasitism	Zueva K. et al.	10
Local differences in parasitism and competition shape defensive investment		
in a polymorphic eusocial bee	Grüter C. et al.	11
A cryptic species in a generalist parasitic wasp (Hymenoptera: Braconidae:		
Aphidiinae): Host range and reproductive isolation	Navasse Y. et al.	11
Fast spread of a fungal parasite in ant supercolonies	Pedersen J. et al.	12
Adaptation of plant pathogens to disease control on heterogeneous		
landscapes	Mikaberidze A.	12
Evidence for extrinsic postzygotic isolation between sympatric host races of		
leaf beetle Lochmaea capreae	Soudi S. et al.	13
Contrasting phylogeograpic patterns of a phytophagous insect and its host		
plants	Naveira H. et al.	13
A parasite's dilemma: Weediness-specialization conflict in Orobanche?	Rahimi S. et al.	14
Genetic basis of biogeographic variation in periodic timing of the parasitoid		
Nasonia vitripennis	Prodic J. et al.	14
Host-parasite specificity in the Apis – Varroa complex in Asia	Page P. et al.	15
Impacts of a hyperparasite on pathogen spread and virulence	Parratt S. et al.	15
Symposium 12. Next-generation phylodynamics		
Phylodynamically estimated HIV diversification rates reveal prevention of		
HIV-1 by antiretroviral therapy	Joy J. et al.	16
EO		

Determining the heritability and molecular determinants of virulence in HIV		
in Europe using whole genome sequencing	Blanquart F. et al.	16
Phylogenetic reconstruction of viral quasispecies dynamics	Boskova V. et al.	17
Phylodynamics on sexual contact networks	Rasmussen D. et al.	17
Metabarcoding bacterial and intestinal nematode communities in free-		
ranging rufous mouse lemurs (Microcebus rufus)	Aivelo T. et al.	18
Interacting species - interacting traits	Bartoszek K.	18
Killer bees or bee killers? The recent global spread of multi-host pollinator		
pathogens	Wilfert L.	19
Symposium 19. Ignoramus et Ignorabimus? - How much genome scar	s can and should tell us about	
Ancestral polymorphism or recent gene flow? Insight from comparative		
genome scans in allopatry and sympatry	Ravinet M. et al.	20
Determining and managing adaptive potential in threatened populations –		
there is hope!	Santure A. et al.	20
The never-ending effect of introgression on genome evolution in broadcast		
spawning marine species	Fraïsse C. et al.	21
Using population re-sequencing data to study patterns of genetic variation in		
butterflies	Wheat C. et al.	21
Genetic structure of populations with different B chromosome frequency		
assessed by two genome scan methods	Adnađević T. et al.	22
Post-bottleneck genetics in wild populations: Do we see what we expect		
and do patterns differ from neutrality?	Leigh D. et al.	22
Estimating selection from clines across the genome	Szep E. et al.	23
		-
Application of restriction-site associated DNA-sequencing for the study of		
genomic diversity and divergence in eastern Brazilian marmosets	Malukiewicz J. et al.	23
The remarkably limited explanatory power of molecular ecology	Meirmans P.	24
The blueprint of genomic architecture: Does adaptation involve genetic	Meimans F.	27
trade-offs?	Dennis S. et al.	24
Analysing Evolve and Resequence Experiments	Sarikas S. et al.	24
Analysing Evolve and Resequence Experiments	Sankas S. et al.	23
Genome-wide population differentiation and local adaptation in Atlantic cod	Matschiner M. et al.	25
Symposium 35. Open symposium	Matschiner M. et al.	25
	Pilakouta N. et al	26
Parental care buffers against inbreeding depression in burying beetles	Pilakouta N. et al.	26
Parental care buffers against inbreeding depression in burying beetles		
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion)	Pilakouta N. et al. Vaux F. et al.	26 26
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus,	Vaux F. et al.	26
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab	Vaux F. et al. Hurtado J. et al.	26 27
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus,	Vaux F. et al.	26
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards	Vaux F. et al. Hurtado J. et al. Novosolov M. et al.	26 27 27
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus	Vaux F. et al. Hurtado J. et al.	26 27
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al.	26 27 27 28
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus	Vaux F. et al. Hurtado J. et al. Novosolov M. et al.	26 27 27
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al.	26 27 27 28 28
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al.	26 27 27 28
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al.	26 27 27 28 28 28 29
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al.	26 27 27 28 28 28 29 29
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al.	26 27 27 28 28 28 29
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al. Mumby H. et al.	26 27 27 28 28 28 29 29 30
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al.	26 27 27 28 28 28 29 29
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al.	26 27 28 28 28 29 29 30 30
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al. Mumby H. et al.	26 27 27 28 28 28 29 29 30
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al.	26 27 27 28 28 28 29 29 30 30 30 31
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al.	26 27 28 28 28 29 29 30 30
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al.	26 27 27 28 28 28 29 29 30 30 30 31
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al.	26 27 27 28 28 28 29 29 30 30 30 31
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al. Barido-Sottani J.	26 27 27 28 28 29 30 30 30 31 31
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al. Barido-Sottani J.	26 27 27 28 28 29 30 30 30 31 31
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach On the importance of uncertainty quantification and modelling in regression	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al. Barido-Sottani J. Chu K. et al.	26 27 27 28 28 29 29 30 30 30 31 31 31 32
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach On the importance of uncertainty quantification and modelling in regression covariates Understanding patterns of trait expression: Trade-offs and correlations	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al. Barido-Sottani J. Chu K. et al. Keller L. et al.	26 27 27 28 28 29 30 30 30 31 31 31 32
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach On the importance of uncertainty quantification and modelling in regression covariates Understanding patterns of trait expression: Trade-offs and correlations Understanding the ecology and genetics of adaptive traits in Drosophila	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al. Barido-Sottani J. Chu K. et al. Keller L. et al. Holen Ø. et al.	26 27 27 28 28 29 30 30 30 30 31 31 31 31 32 32 33
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach On the importance of uncertainty quantification and modelling in regression covariates Understanding patterns of trait expression: Trade-offs and correlations	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al. Barido-Sottani J. Chu K. et al. Keller L. et al.	26 27 27 28 28 29 30 30 30 31 31 31 32
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach On the importance of uncertainty quantification and modelling in regression covariates Understanding patterns of trait expression: Trade-offs and correlations Understanding the ecology and genetics of adaptive traits in Drosophila enbryos	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Yamasaki Y. et al. Earido-Sottani J. Chu K. et al. Keller L. et al. Holen Ø. et al.	26 27 27 28 28 29 30 30 30 31 31 31 32 32 32 33 33
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach On the importance of uncertainty quantification and modelling in regression covariates Understanding patterns of trait expression: Trade-offs and correlations Understanding the ecology and genetics of adaptive traits in Drosophila embryos	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Teixeira S. et al. Barido-Sottani J. Chu K. et al. Keller L. et al. Holen Ø. et al.	26 27 27 28 28 29 30 30 30 30 31 31 31 31 32 32 33
Parental care buffers against inbreeding depression in burying beetles Testing for Punctuated Evolution in New Zealand Marine Snails (Penion) Evolutionary and conservation genetics studies in Damithrax spinosissimus, the Caribbean king spider crab The evolutionary nature of high population density in insular lizards Molecular systematics of the asian species of the genus Metagonimus Male diapause exists in Drosophila montana; diapause affects CHC composition and mating behaviour in D. montana Antibiotic restriction might facilitate the emergence of Multi-Drug Resistance Evidence for the emergence of a lethal genetic disease in a wild bird population of conservation concern Elephants born in the high stress season age faster Parallel divergence of landlocked freshwater gobies from an amphidromous ancestor in the Ryukyu Islands of Japan Fine-scale genetic structure, distant matings and inbreeding depression in natural populations of Fucus vesiculosus Quantifying clade-specific speciation and extinction rates from phylogenies Strong genetic differentiation of the goby Rhinogobius duospilus in Hong Kong streams revealed by a multilocus approach On the importance of uncertainty quantification and modelling in regression covariates Understanding patterns of trait expression: Trade-offs and correlations Understanding the ecology and genetics of adaptive traits in Drosophila enbryos	Vaux F. et al. Hurtado J. et al. Novosolov M. et al. Thaenkham U. et al. Ala-Honkola O. et al. Obolski U. et al. Obolski U. et al. Trask A. et al. Mumby H. et al. Yamasaki Y. et al. Yamasaki Y. et al. Earido-Sottani J. Chu K. et al. Keller L. et al. Holen Ø. et al.	26 27 27 28 28 29 30 30 30 31 31 31 32 32 32 33 33

A post-copulatory pre-zygotic barrier between collared and pied flycatchers	Cramer E. et al.	35
Population genomics on a non model fish species through Genotyping by		
Sequencing	Carreras C. et al.	36
MetaPIGA 4.0, maximum likelihood and Bayesian phylogenomics using		
Genetic-Algorithm and Monte-Carlo samplers	Grbic D. et al.	36
Disentangling the complex evolutionary history of the Western Palearctic		
blue tits (Cyanistes spp.) – phylogenomic analyses suggest radiation by		~-
multiple colonisation events and subsequent isolation	Stervander M. et al.	37
Phylogeny and biogeography of Primula sect. Armerina in the Qinghai-		07
Tibetan Plateau	Ren G. et al.	37
Quantifying Nature's appearance: Combining high-resolution, coloured 3D reconstruction and mathematical tools to analyse skin patterns in		
Pantherophis guttatus	Martins A. et al.	38
Endogenous control of sexual size dimorphism: Gonadal androgens have	Martins A. et al.	30
neither direct nor indirect effect on male growth in a gecko	Kubicka L. et al.	38
Genetic relatedness does not predict the queen's successor in the	Rubicka E. et al.	50
primitively eusocial wasp, Ropalidia marginata	Chakraborty S. et al.	39
	chaltabolty C. Ct al.	00
Phylogenetic (in)stability of G and B matrices in Acridid grasshoppers	Chakrabarty A. et al.	39
Fishery-induced selection: What can be learned from introduced salmonids		
in Sierra Nevada Lakes?	Nusslé S. et al.	40
Experimental reduction of penis length reduces male reproductive success		-
in a bug	Dougherty L. et al.	40
Phylogenetic origins of the avian MHC Class IIB	Goebel J. et al.	41
Role of gamete and propagule dispersal in shaping the genetic distribution		
of sessile organisms	Montano V. et al.	41
Individual experience affects how zebra finch males attend to physical		
properties of nest materials	Ihalainen E. et al.	42
Does phenotypic integration constrain morphological diversification? A		
phylogenetic comparative study	Tsuboi M. et al.	42
Population structure of the coconut crab Birgus latro (Decapoda: Anomura:		
Coenobitidae) from Christmas island in the Indian ocean	Anagnostou C. et al.	43
The role of kinesin in the regulation a quantitative colour trait	Fogelholm J.	43
Explaining the variation in gestation length and weaning age across		
mammals	Gudde R. et al.	44
Colonization pathways, genetic diversity and inbreeding depression in non-		
native lizards	Michaelides S. et al.	44
Relation between sex specific hormones (testosterone, progesterone) and		45
sex specific traits in the Barn owl (Tyto alba)	Béziers P. et al.	45
No ovidence for reproduction lifeanen tradeoffe in fomales of a Drecephile		
No evidence for reproduction-lifespan tradeoffs in females of a Drosophila	Social et al	45
long-lived insulin-signaling mutant, under varying exposure to males Evolution of multiple trade-offs in a predator-prey system	Sepil I. et al. Woltermann N. et al.	45 46
Hybridization capture using RAD-seq probes: A novel technique improving	Woltermann N. et al.	40
data quality and among-sample overlap	Pitteloud C. et al.	46
Tracing the invasion history of Europe's worst slug pest	Zemanova M. et al.	47
Trancriptome profiling of a key morphological innovation: The propelling fan	Zemanova W. et al.	-1
of the water walking bug Rhagovelia obesa	Santos M. et al.	47
Artificial selection for genital size impacts brain morphology	Buechel S. et al.	48
How leaf mimicry of Kallima butterflies evolved?	Suzuki T. et al.	48
Reproductive isolation between sibling species of seaweeds: The case of		
two Lessonia species along the Chilean coast	Tellier F. et al.	49
The total evidence approach with sampled ancestors	Drummond A. et al.	49
Transcriptomic changes characterizing inbreeding depression in a wild		
population of Alpine ibex (Capra ibex)	Sluzek K. et al.	50
Spatial patterns in a human controlled popualation, the Swedish moose		
(Alces alces)	Wennerström L. et al.	50
Differentially expressed genes in Anguillicola crassus-infected European		
eels	Bracamonte S. et al.	51
The Avian Transcriptome Response to Malaria Infection	Videvall E. et al.	51
The genetic handicap principle: A severely deleterious mutation can be		
tolerated if the genome-wide mutation load is sufficiently low	Popadin K. et al.	52
61		

Symposium 9. Evolutionary ecology of cooperation: theory and expe	eriment	
Fine-scale genetic structure reflects sex-specific dispersal strategies in a		
population of sociable weavers	van Dijk R. et al.	53
Evolution of parasite interactions and virulence: From within-host growth to		
epidemiological feedbacks and back again	Sofonea M. et al.	54
Decisions of Group Size with Respect to Social Dilemmas and Between-		
Group Competition	Heap S. et al.	54
The Evolution of Antibiotic Resistance in Bacterial Colonies	Frost I. et al.	55
Social microbial immunity: Experimental test with Pseudomonas aeruginosa		
bacterium and lytic bacteriophages	Friman V. et al.	55
		00
Is vocal similarity used to assess relatedness in cooperative breeders?	Leedale A. et al.	56
		00
Evolution of informed dispersal : The offect of information transmission	Iritani R.	56
Evolution of informed dispersal : The effect of information transmission	González-Forero M.	
Stable eusociality through maternal manipulation	Gonzalez-Forero M.	57
Disgusting or refreshing? Do offspring benefit from feces sharing in the		F7
European earwig?	Körner M. et al.	57
Cooperative bacteria in stationary phase are immune to cheating	Ghoul M. et al.	58
Eco-evolutionary dynamics of social dilemmas	Gokhale C. et al.	58
The co-evolution of social institutions, demography, and large-scale human		
cooperation	Powers S. et al.	59
Family living - an overlooked social system in the evolutionary history of		
cooperation	Drobniak S. et al.	59
The evolution of anti-social rewarding and its counter-measures in public		
goods games	dos Santos M.	60
Cooperating to Exclude Competitors in Natural Bacterial Populations	Bruce J. et al.	60
Evolution of an artificial ecosystem	Liu Y.	61
Natural and experimentally induced queen succession in the tropical social		•
wasp Ropalidia marginata	Saha P. et al.	61
Cooperation mediates density-dependent dispersal and colonization	Gana F. et al.	01
efficiency in a ciliate	Jacob S. et al.	62
•		62
The Evolution of Cooperation through Genetic Niche Hiking Social evolution and antibiotic resistance in Pseudomonas aeruginosa	Hammarlund S. et al.	62
		~~
infections	Crosse D. et al.	63
infections Brood discrimination in the ant Formica exsecta	Pulliainen U. et al.	63
infections		
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree	Pulliainen U. et al. Till-Bottraud I. et al.	63 64
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al.	63
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree	Pulliainen U. et al. Till-Bottraud I. et al.	63 64
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al.	63 64 64
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al.	63 64 64
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J.	63 64 64 65
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony?	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J.	63 64 64 65
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al.	63 64 64 65 65
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J.	63 64 64 65
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al.	63 64 65 65 66
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al.	63 64 64 65 65
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al.	63 64 65 65 65 66 66
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al.	63 64 65 65 66
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al.	63 64 65 65 65 66 66
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al.	63 64 65 65 65 66 66
 infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic elemeters 	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al.	63 64 65 65 65 66 66
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic elemet A selfish genetic element influences sperm precedence patterns in house	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al.	63 64 65 65 66 66 67
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic elemet A selfish genetic element influences sperm precedence patterns in house mice	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al.	63 64 65 65 65 66 66
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic elemet A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al.	63 64 65 65 66 66 67 69
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic eleme A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al.	63 64 65 65 66 66 67
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic eleme A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al.	63 64 65 65 66 66 67 69 69
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic element A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al.	63 64 65 65 66 66 67 69 69 69 70
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic eleme A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al.	63 64 65 65 66 66 67 69 69
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic element A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Choudhury R. et al.	63 64 65 65 66 66 67 69 69 69 70 70
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic eleme A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance The evolution of metazoan genomes and highly conserved SINE domains	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Christie J. et al.	63 64 65 65 65 66 67 69 69 69 70 70 70 70
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic elemet A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance The evolution of metazoan genomes and highly conserved SINE domains Horizontal gene spread through bacterial host altruism	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Christie J. et al. Luchetti A. et al. Dimitriu T. et al.	63 64 65 65 65 66 67 69 69 69 70 70 70 70 71 71
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic eleme A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance The evolution of metazoan genomes and highly conserved SINE domains Horizontal gene spread through bacterial host altruism PGE in the citrus mealybug: Is the maternal victory complete?	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Christie J. et al.	63 64 65 65 65 66 67 69 69 69 70 70 70 70
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic element A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance The evolution of metazoan genomes and highly conserved SINE domains Horizontal gene spread through bacterial host altruism PGE in the citrus mealybug: Is the maternal victory complete? Dynamics of transposable elements in the genome of Taraxacum officinale	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Choudhury R. et al. Christie J. et al. Luchetti A. et al. Dimitriu T. et al. Garcia de la Filia A. et al.	63 64 65 65 66 66 67 69 69 69 69 70 70 70 70 70 71 71 71 72
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic elemet A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance The evolution of metazoan genomes and highly conserved SINE domains Horizontal gene spread through bacterial host altruism PGE in the citrus mealybug: Is the maternal victory complete? Dynamics of transposable elements in the genome of Taraxacum officinale apomictic lineages	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Christie J. et al. Luchetti A. et al. Dimitriu T. et al.	63 64 65 65 65 66 67 69 69 69 70 70 70 70 71 71
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic eleme A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance The evolution of metazoan genomes and highly conserved SINE domains Horizontal gene spread through bacterial host altruism PGE in the citrus mealybug: Is the maternal victory complete? Dynamics of transposable elements in the genome of Taraxacum officinale apomictic lineages Transposable element dynamics mediated by piRNA pathway in response	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Christie J. et al. Christie J. et al. Luchetti A. et al. Dimitriu T. et al. Garcia de la Filia A. et al.	63 64 65 65 66 66 67 69 69 69 69 70 70 70 70 70 71 71 71 72
infections Brood discrimination in the ant Formica exsecta Facilitation and kin selection in a Patagonian dominant tree A dynamic model of reproductive decisions in primitively eusocial insects Queen signal evolution in social Hymenoptera Does cooperation mean kinship in spatially discreet nests within an ant colony? The rise and fall of cooperative breeding in birds – the role of life-history and ecology for evolutionary transitions to and from cooperative breeding Resource competition and population structure makes social learning models more biologically relevant Comparison of Public and Private Partner Selection Models in Cooperation and Coordination Games Amphimax 412 Symposium 16. Evolutionary consequences of selfish genetic elemet A selfish genetic element influences sperm precedence patterns in house mice Prezygotic segregation distortion in female and male zebra finches Taeniopygia guttata Retrotransposon-mediated origin of loci functioning under alpine conditions in the autotetraploid Biscutella laevigata Revisiting the selfish conflict theory of mitochondrial inheritance The evolution of metazoan genomes and highly conserved SINE domains Horizontal gene spread through bacterial host altruism PGE in the citrus mealybug: Is the maternal victory complete? Dynamics of transposable elements in the genome of Taraxacum officinale apomictic lineages	Pulliainen U. et al. Till-Bottraud I. et al. Avila P. et al. van Zweden J. Procter D. et al. Griesser M. et al. Smolla M. et al. Mariano P. et al. Mariano P. et al. Sutter A. et al. Knief U. et al. Choudhury R. et al. Choudhury R. et al. Christie J. et al. Luchetti A. et al. Dimitriu T. et al. Garcia de la Filia A. et al.	63 64 65 65 66 66 67 69 69 69 69 70 70 70 70 70 71 71 71 72

Deregitia plaamida ingraage bestarial mutation rates and antibiotic		
Parasitic plasmids increase bacterial mutation rates and antibiotic resistance	Inglis F. et al.	73
Evolutionary dynamics of meiotic drive elements in the fungus Podospora		10
anserina	Bastiaans E. et al.	74
Differential introgression of retrotransposons in a natural hybrid zone		
between wild wheats	Felber F. et al.	74
Transposable elements in animals of varying age and reproductive mode	Bast J. et al.	75
Symposium 18. How to Identify and Test the Loci and Alleles Underlyin Major QTL of a morphological lock-and-key mechanism in Drosophila	ng Adaptation?	
santomea and Drosophila yakuba	Peluffo A. et al.	76
BayeScEnv: A new Fst-based method to uncover local adaptation using	r cluito / cluit	10
environmental variables	de Villemereuil P. et al.	76
Genotyping museum samples from extinct vs extant populations to identify		
genes affecting adaptation	Fountain T. et al.	77
Validating SNPs underlying local adaptation in lodgepole pine	Gilbert K. et al.	77
Boosting inference power by gathering time-serial data: An example from		70
influenza virus	Bank C. et al.	78
Females with long legs: Signatures of selection in the genome of the South African bee genus Rediviva	Kahnt B. et al.	78
QTL mapping of stress related traits in the model brown alga Ectocarpus	Kallin D. et al.	10
siliculosus	Avia K. et al.	79
Distribution of chromosome identical-by-descent block length as an		
integrating multilocus approach in population genetics	Tiret M. et al.	79
Identification of Arctic population of Mytilus mussels based on SNP markers	Zbawicka M. et al.	80
Eco-evolutionary dynamics in response to seasonal adaptation in		
Drosophila The neuror to detect collection from gone frequencies verifician in 10	Rajpurohit S. et al.	80
The power to detect selection from gene frequencies variation in 10 generations	Hubert J. et al.	81
Hybrid zones as natural laboratories to study adaptation in host-parasite	Tubert J. et al.	01
systems: The Murine cytomegalovirus in the European house mouse hybrid		
zone	Gouy de Bellocq J. et al.	81
Local adaptation in osmoregulatory physiology in sticklebacks	De Faveri J. et al.	82
Genome wide approach to detect positive selection on the plant pathogen		
fungal genus Colletotrichum	Vieira A. et al.	82
Mapping of quantitative trait loci (QTL) for fitness-related traits in the house		
sparrow	Jensen H. et al.	83
Identifying the Loci of Selection in a 30-Year Long Selection Experiment for Longevity in Drosophila melanogaster	Garschall K. et al.	83
Seed dormancy contributes strongly to local adaption in Arabidopsis	Gaischall N. et al.	05
thaliana	Postma F. et al.	84
Dertermination of the selection process acting on the PGM in Alevinella		
pompejana	Bioy A. et al.	84
Lipocalin Gene Expression Divergence in Drosophila melanogaster and		
Drosophila simulans	Onder B. et al.	85
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by		
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing	Onder B. et al. Stockenhuber R. et al.	85 85
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of	Stockenhuber R. et al.	85
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia		
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic	Stockenhuber R. et al.	85
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia	Stockenhuber R. et al.	85
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change?	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al.	85 86
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi	Stockenhuber R. et al. Cordellier M. et al.	85 86
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al.	85 86 86 87
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related gene of coffee leaf rust	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al. Modesto I. et al.	85 86 86 87 87
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related gene of coffee leaf rust Finding the genes which make great tits innovators	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al.	85 86 86 87
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related gene of coffee leaf rust Finding the genes which make great tits innovators Amphimax 413	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al. Modesto I. et al.	85 86 86 87 87
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related gene of coffee leaf rust Finding the genes which make great tits innovators Amphimax 413 Symposium 2. What is new in the study of sex allocation?	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al. Modesto I. et al.	85 86 86 87 87
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related gene of coffee leaf rust Finding the genes which make great tits innovators Amphimax 413 Symposium 2. What is new in the study of sex allocation? Comparative phylogenetic analysis of sex allocation evolution in the	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al. Modesto I. et al. Laine V. et al.	85 86 86 87 87 88
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related gene of coffee leaf rust Finding the genes which make great tits innovators Amphimax 413 Symposium 2. What is new in the study of sex allocation?	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al. Modesto I. et al.	85 86 86 87 87
Drosophila simulans Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing Local adaptation at the transcriptomic level in European populations of Daphnia Genotype and phenotype in a changing ocean: Can standing genetic variation in stress responses rescue mussel populations from the negative impacts of climate change? Phylogenomics provides insights on the adaptive evolution of rust fungi Analysis of allele-specific expression in a putative pathogenesis-related gene of coffee leaf rust Finding the genes which make great tits innovators Amphimax 413 Symposium 2. What is new in the study of sex allocation? Comparative phylogenetic analysis of sex allocation evolution in the	Stockenhuber R. et al. Cordellier M. et al. Kingston S. et al. Silva D. et al. Modesto I. et al. Laine V. et al.	85 86 86 87 87 88

Divorce and infidelity are associated with skewed adult sex ratios in birds	Szekely T. et al.	90
Socially sensitive gene expression analysis of seminal fluid proteins in a		
simultaneously hermaphroditic marine flatworm	Patlar B. et al.	90
Maladaptive sex ratio manipulation in invasive Artemia franciscana	Lievens E. et al.	91
Testing for cytonuclear conflict over sex allocation in a simultaneously		
hermaphroditic flatworm	Vellnow N. et al.	91
Identifying the selective pressures underlying offspring sex-ratio		
adjustments to test a priori predictions: A case study	Merkling T. et al.	92
The genetic architecture of sex allocation in a simultaneous hermaphrodite	Ramm S. et al.	92
Sex role decisions of a simultaneous hermaphrodite: Young and small		
snails choose to be male first	Nakadera Y. et al.	93
Does local resource competition select for less female biased sex ratios		
under local mate competition in spider mites?	Duncan A. et al.	93
Local mate competition: The role of population viscosity, fecundity, and		
mating system	Rodrigues A. et al.	94
Sex allocation, plasticity and the preference for the male role in		
simultaneous hermaphrodites	Lorenzi M. et al.	94
Symposium 4. Evolutionary consequences of sexually antagonistic s	election	
Experimental evolution of male harm and female resistance in		
Callosobruchus maculatus	Rodriguez-Exposito E. et al.	95
Investigating the contribution of different developmental and breeding		
ecologies to mediating sexual conflict in laboratory populations of D.		
melanogaster	Mital A.	95
Intralocus sexual antagonism in a hermaphroditic flatworm	Nordén A. et al.	96
The demographic consequences of evolution of female polymorphisms in		
damselflies	Takahashi Y. et al.	96
Female limited X-chromosome evolution reveals non-additivity of sexually		
antagonistic traits	Abbott J. et al.	97
Divergence of Drosophila melanogaster populations in female sensitivity to		
sex-peptide	Wensing K. et al.	97
	0	
Exploring the Genetic Basis of Intralocus Sexual Conflict in Drosophila	Pennell T.	98
Exploring the Genetic Basis of Intralocus Sexual Conflict in Drosophila Are males in old age still competitive? Age-dependent sexual conflict in	Pennell T.	98
Are males in old age still competitive? Age-dependent sexual conflict in	Pennell T. Ruhmann H. et al.	98 98
Are males in old age still competitive? Age-dependent sexual conflict in		
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite	Ruhmann H. et al.	98
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large	Ruhmann H. et al.	98
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite	Ruhmann H. et al. Janicke T. et al. Tarka M. et al.	98 99
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach	Ruhmann H. et al. Janicke T. et al.	98 99 99
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al.	98 99 99
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from	Ruhmann H. et al. Janicke T. et al. Tarka M. et al.	98 99 99 99 100
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al.	98 99 99 99 100
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment?	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al.	98 99 99 100 100
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al.	98 99 99 100 100 101
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G.	98 99 99 100 100 101 101
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G.	98 99 99 100 100 101 101
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al.	98 99 99 100 100 101 101 101 102
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris?	Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al.	98 99 99 100 100 101 101 101 102 102
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. 	98 99 99 100 100 101 101 101 102 102 103
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. 	98 99 99 100 100 101 101 101 102 102 103
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Suárez-Rodríguez M. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. 	98 99 99 100 100 101 101 101 102 102 103 103
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes?	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Suárez-Rodríguez M. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. 	98 99 99 100 100 101 101 101 102 102 103 103
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. 	98 99 99 100 100 101 101 102 102 103 103 104
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. 	98 99 99 100 100 101 101 102 102 103 103 104
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies Symposium 7. Social Evolution & Sexual Conflict	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. 	98 99 99 100 100 101 101 102 102 103 103 104
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies Symposium 7. Social Evolution & Sexual Conflict Evolution of interacting reproductive behaviours in burying beetles	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. Merrill R. et al. 	98 99 99 100 100 101 101 102 102 103 103 103 104 104
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies Symposium 7. Social Evolution & Sexual Conflict Evolution of interacting reproductive behaviours in burying beetles (Nicrophorus vespilloides)	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. Merrill R. et al. 	98 99 99 100 100 101 101 102 102 103 103 103 104 104
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies Symposium 7. Social Evolution & Sexual Conflict Evolution of interacting reproductive behaviours in burying beetles (Nicrophorus vespilloides) Once-a-year coordinated dispersal in subsocial beetles reduces inbreeding	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. Merrill R. et al. Royle N. et al. 	98 99 99 100 100 101 101 102 102 103 103 103 104 104
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies Symposium 7. Social Evolution & Sexual Conflict Evolution of interacting reproductive behaviours in burying beetles (Nicrophorus vespilloides) Once-a-year coordinated dispersal in subsocial beetles reduces inbreeding rate	 Ruhmann H. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. Merrill R. et al. Royle N. et al. 	98 99 99 100 100 101 101 102 102 103 103 103 104 104
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies Symposium 7. Social Evolution & Sexual Conflict Evolution of interacting reproductive behaviours in burying beetles (Nicrophorus vespilloides) Once-a-year coordinated dispersal in subsocial beetles reduces inbreeding rate Kin selection and male-male competition: Geographic variation in male- male lethal fighting in a social spider mite	 Ruhmann H. et al. Janicke T. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. Merrill R. et al. Royle N. et al. Harari A. et al. 	98 99 99 100 100 101 101 102 102 103 103 103 104 104 105 105
Are males in old age still competitive? Age-dependent sexual conflict in Drosophila melanogaster Sexually antagonistic genetic variation in a simultaneous hermaphrodite Intralocus sexual conflict and the evolution of sexual dimorphism - a large scale approach Parallelism in sex-biased gene expression Not a fair share; female house finches build and protect the nest from parasites using cigarette refuse, butt Do asymmetric paternal effects on offspring size reveal male manipulation of maternal investment? Temporal dynamics of sex-biased gene expression in an annual plant When caring evens out between the sexes Is sexually antagonistic selection causing the replacement of a sex chromosome system in Podisma pedestris? Pollen dispersal affects the evolution of sexual dimorphism The architecture of sexually antagonistic genetic variation Males increase their fitness with high MHC diversity whereas females do not: Sexually antagonistic selection on immunity genes? Evolutionary consequences of male attraction to warning patterns in mimetic butterflies Symposium 7. Social Evolution & Sexual Conflict Evolution of interacting reproductive behaviours in burying beetles (Nicrophorus vespilloides) Once-a-year coordinated dispersal in subsocial beetles reduces inbreeding rate Kin selection and male-male competition: Geographic variation in male-	 Ruhmann H. et al. Janicke T. et al. Janicke T. et al. Tarka M. et al. Jalvingh K. et al. Suárez-Rodríguez M. et al. Saldivar Lemus Y. et al. Cossard G. Keller I. et al. Becher H. et al. Tonnabel J. et al. Grieshop K. Roved J. et al. Merrill R. et al. Royle N. et al. Harari A. et al. 	98 99 99 100 100 101 101 102 102 103 103 103 104 104 105 105

The effect of relatedness structure and sexual conflict or	n the evolution of		
inbreeding avoidance and preference		Duthie A. et al.	107
Sexual conflict over laying patterns in the burying beetle	Nicrophorus		
vespilloides		Ford L.	107
Indirect Genetic Effects on Reproductive Behaviour and	1 07	Marie-Orleach L. et al.	108
Epigenetic machinery underlying paternal genome elimir	nation in		400
Planococcus citri	aial harmanaa in	Bain S. et al.	108
Sexual antagonism, cryptic bias, and the evolution of so- bank voles	cial normones in	Mokkonen M. et al.	ext 109
The role of male-male relatedness on sexual interaction	s in Drosonhila	MORKOHEN M. et al.	ext 109
melanogaster		Le Page S. et al.	ext 109
Is dispersal a good strategy? Sibling competition, disper	sal and fitness	201 ago 0. ot al.	0/11/00
outcomes in humans		Nitsch A. et al.	ext 110
Male and mutual sexual imprinting: What strategy is the	best?	Gomez M.	ext 110
Molecular mechanisms of post-copulatory sexual selecti	on in a leaf-cutting		
ant		Liberti J. et al.	ext 111
An explicit test for the relative role of pre-versus postco	oulatory inbreeding		
avoidance in an acridid grasshopper		Haneke-Reinders M. et al.	ext 111
Amphimax 414			
Symposium 29. The evolution and ecology of trai	t loss and dependen	су	
The ups and downs of interlinked public goods traits		Ross-Gillespie A. et al.	112
Molecular and Genetic Mechanisms Underlying Parallel	Loss of Seasonal		
Photoperiodism in Sticklebacks		Ishikawa A. et al.	112
Competition between symbiont species – a mechanism		Heyworth E. et al.	113
Oxidative homeostasis and the evolution of tolerance an	d dependence in		
insect-Wolbachia symbioses		Monnin D. et al.	113
The genetic architecture of sexual trait decay	of a cov	van der Kooi C. et al.	114
Evolutionary shifts in chemical communication: The loss pheromone	of a sex	Buellesbach J. et al.	114
Recent diversification events in Bicyclus butterflies are g	enerally linked with	Duellesbach J. et al.	114
trait loss		Brattstrom O. et al.	115
Differential gene expression associated with evolutionar	v loss of a		110
metabolic trait	, ,	Lammers M. et al.	115
Males of a small marine fish reduce the use of one of tw	o courtship signals		
as a response to aquatic noise		de Jong K. et al.	116
Symposium 32. Forecasting eco-evolutionary res		inges	
Gene flow-selection balance and the response of metap	opulations to		
climate change		Logan M. et al.	117
The role of life history traits in mammalian invasion succ		Capellini I. et al.	117
Temperature-dependent benefits of bacteria for the hato resting eggs of Daphnia magna	ning success of	Mushegian A. et al.	118
Empirical evidence that natural selection is not the only r	nechanism of	Musilegian A. et al.	110
adaptive evolution		Edelaar P. et al.	118
Do opposites attract or detract? Direct conflicts between	genetic and		110
environmental influences on body size in North America		Taylor M.	119
The determination of the sensitive parameters to analyze			
the terrestrial ecosystem		Sun G.	119
Predation pressure accelerates evolutionary response to	temperature		
change	A 1.1	Tseng M. et al.	120
Determinants of connectivity in the marine environment:	A multispecies		
approach			101
Monning genetic and encoired diversity of pollineters to the		Cahill A. et al.	121
Mapping genetic and species diversity of pollinators to the	ne ecosystem		
service of pollination across changing landscapes		Cahill A. et al. Theodorou P. et al.	121 121
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Physical Selective Herbivory (1997)		Theodorou P. et al.	121
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach	logenetic	Theodorou P. et al. van Bergen E. et al.	121 122
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Physical Selective Herbivory (1997)	/logenetic natic events	Theodorou P. et al.	121
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach Plastic response of a long-lived shorebird to extreme clir	/logenetic natic events	Theodorou P. et al. van Bergen E. et al. Bailey L. et al.	121 122 122
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach Plastic response of a long-lived shorebird to extreme clir Climate change responses in canopy-forming seaweeds Broadness of thermal tolerance is linked to decreased vi pathogen - does climate change alter disease epidemics	vlogenetic natic events rulence in fish	Theodorou P. et al. van Bergen E. et al. Bailey L. et al.	121 122 122
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach Plastic response of a long-lived shorebird to extreme clir Climate change responses in canopy-forming seaweeds Broadness of thermal tolerance is linked to decreased vi pathogen - does climate change alter disease epidemics Phenotypic responses of a water flea population to rapid	vlogenetic natic events rulence in fish	Theodorou P. et al. van Bergen E. et al. Bailey L. et al. Jueterbock A. et al. Ashrafi R.	121 122 122 123 123
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach Plastic response of a long-lived shorebird to extreme clir Climate change responses in canopy-forming seaweeds Broadness of thermal tolerance is linked to decreased vi pathogen - does climate change alter disease epidemics Phenotypic responses of a water flea population to rapid change	vlogenetic natic events rulence in fish	Theodorou P. et al. van Bergen E. et al. Bailey L. et al. Jueterbock A. et al. Ashrafi R. Mannerla M. et al.	121 122 122 123 123 123
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach Plastic response of a long-lived shorebird to extreme clir Climate change responses in canopy-forming seaweeds Broadness of thermal tolerance is linked to decreased vi pathogen - does climate change alter disease epidemics Phenotypic responses of a water flea population to rapid change Do the number of niches limit diversification?	vlogenetic natic events rulence in fish ? environmental	Theodorou P. et al. van Bergen E. et al. Bailey L. et al. Jueterbock A. et al. Ashrafi R. Mannerla M. et al. du Plessis L. et al.	121 122 122 123 123 123 124 124
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach Plastic response of a long-lived shorebird to extreme clir Climate change responses in canopy-forming seaweeds Broadness of thermal tolerance is linked to decreased vi pathogen - does climate change alter disease epidemics Phenotypic responses of a water flea population to rapid change Do the number of niches limit diversification? Experimental evolution of metal tolerance in changing en	vlogenetic matic events rulence in fish ? environmental	Theodorou P. et al. van Bergen E. et al. Bailey L. et al. Jueterbock A. et al. Ashrafi R. Mannerla M. et al.	121 122 122 123 123 123
service of pollination across changing landscapes Photosynthetic Pathways and Selective Herbivory: A Phy Comparative Approach Plastic response of a long-lived shorebird to extreme clir Climate change responses in canopy-forming seaweeds Broadness of thermal tolerance is linked to decreased vi pathogen - does climate change alter disease epidemics Phenotypic responses of a water flea population to rapid change Do the number of niches limit diversification?	vlogenetic matic events rulence in fish ? environmental	Theodorou P. et al. van Bergen E. et al. Bailey L. et al. Jueterbock A. et al. Ashrafi R. Mannerla M. et al. du Plessis L. et al.	121 122 122 123 123 123 124 124

Heterosis and inbreeding depression in alpine populations of Arabidopsis		400
thaliana Environmental variation affects fitness and energetics in nectar-feeding	Roumet M. et al.	126
butterflies	Niitepõld K. et al.	126
Evolutionary Potential in the Face of Catastrophic Change	Lee C. et al.	120
Is hotter always smaller? Evolutionary response of Daphnia to global		
warming	Dziuba M. et al.	127
Simulating predicted environmental changes in freshwater ecosystems:		
How do altered conditions affect Daphnia populations and host-parasite		
interactions?	Saebelfeld M. et al.	128
The Great American Biotic Interchange: Studying biological invasions in	Carrillo J. et al.	128
deep time	Carrillo J. et al.	120
Phylogenomics method for ranking populations of the endangered		
Anadromous Atlantic Salmon (Salmo salar) for conservation management	Faye L. et al.	129
Why would a hybrid clone outcompete its parental species? (Daphnia		
galeata × longispina species complex)	Wolinska J. et al.	129
Genetic variability in the wild is influenced by microhabitat characteristics in		
Drosophila subobscura	Kurbalija Novicic Z. et al.	130
Evolutionary history counts in population response to thermal stress in		400
inbred and outbred lines of Drosophila subobscura	Patenković A. et al.	130
Genetic consequences of species' range shifts and contractions due to climate and land-use changes	Pajkovic M. et al.	ext 132
Spatial distributions of genetic diversity and local adaptation in		EXI 152
metapopulations on heterogeneous landscapes	Nonaka E.	ext 132
Evolutionary trade-off in thermal adaptation and its effect on responses of		0/11/02
animals to global climate change	MALDONADO K. et al.	ext 133
Niche conservatism and evolutionary range expansion in mycalesine		
satyrine butterflies	Lees D. et al.	ext 133
Amphipôle 300		
Symposium 17. Polyploid evolution: Integrating ecological and genor	nia atudiaa	
Symposium 17. Polypiold evolution. Integrating ecological and genor		
Habitat segregation in an allopolyploid and its parent species in Cardamine	Akiyama R. et al.	134
Habitat segregation in an allopolyploid and its parent species in Cardamine	Akiyama R. et al.	
Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ?	Akiyama R. et al. Arrigo N. et al.	134
Habitat segregation in an allopolyploid and its parent species in Cardamine	Akiyama R. et al.	
Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al.	134
Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ?	Akiyama R. et al. Arrigo N. et al.	134 135
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al.	134 135
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid- 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al.	134 135 135 136
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al.	134 135 135 136 136
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al.	134 135 135 136
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Meeus S. et al.	134 135 135 136 136 137
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al.	134 135 135 136 136
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Meeus S. et al. Lischer H. et al.	134 135 135 136 136 137 137
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Meeus S. et al.	134 135 135 136 136 137
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Meeus S. et al. Lischer H. et al.	134 135 135 136 136 137 137
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Meeus S. et al. Lischer H. et al. Dirihan S. et al.	134 135 135 136 136 137 137 137
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Meeus S. et al. Lischer H. et al. Dirihan S. et al.	134 135 135 136 136 137 137 137
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Castro M. et al. Lischer H. et al. Dirihan S. et al. Stobie C. et al.	134 135 135 136 136 137 137 137 138 138 139
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Meeus S. et al. Lischer H. et al. Dirihan S. et al. Stobie C. et al.	134 135 135 136 136 137 137 138 138
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Castro M. et al. Lischer H. et al. Dirihan S. et al. Stobie C. et al. Sutherland B. et al.	134 135 135 136 136 137 137 137 138 138 138 139 139
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and plant lineages fate 	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Castro M. et al. Lischer H. et al. Dirihan S. et al. Stobie C. et al.	134 135 135 136 136 137 137 137 138 138 139
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and plant lineages fate The role of ploidy in host resistance: An experimental test of triploid and 	Akiyama R. et al.Arrigo N. et al.Mandakova T. et al.Mandakova T. et al.Mandakova T. et al.Huynh S. et al.Castro M. et al.Meeus S. et al.Lischer H. et al.Dirihan S. et al.Stobie C. et al.Sutherland B. et al.Chumova Z. et al.Laurent S. et al.	134 135 135 136 136 137 137 137 138 138 138 139 139 139
Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid- octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and plant lineages fate The role of ploidy in host resistance: An experimental test of triploid and tetraploid snails	Akiyama R. et al. Arrigo N. et al. Mandakova T. et al. Mandakova T. et al. Huynh S. et al. Castro M. et al. Castro M. et al. Lischer H. et al. Dirihan S. et al. Stobie C. et al. Sutherland B. et al.	134 135 135 136 136 137 137 137 138 138 138 139 139
Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid- octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and plant lineages fate The role of ploidy in host resistance: An experimental test of triploid and tetraploid snails Terra incognita of contemporary plant biosystematics: Untangling the	Akiyama R. et al.Arrigo N. et al.Mandakova T. et al.Mandakova T. et al.Mandakova T. et al.Huynh S. et al.Castro M. et al.Meeus S. et al.Lischer H. et al.Dirihan S. et al.Stobie C. et al.Sutherland B. et al.Chumova Z. et al.Laurent S. et al.Jenkins C. et al.	134 135 135 136 136 137 137 137 138 138 139 139 139 140 140
Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid- octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and plant lineages fate The role of ploidy in host resistance: An experimental test of triploid and tetraploid snails	Akiyama R. et al.Arrigo N. et al.Mandakova T. et al.Mandakova T. et al.Mandakova T. et al.Huynh S. et al.Castro M. et al.Meeus S. et al.Lischer H. et al.Dirihan S. et al.Stobie C. et al.Sutherland B. et al.Chumova Z. et al.Laurent S. et al.	134 135 135 136 136 137 137 137 138 138 138 139 139 139
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and plant lineages fate The role of ploidy in host resistance: An experimental test of triploid and tetraploid snails Terra incognita of contemporary plant biosystematics: Untangling the sources of complexity in Ranunculus subg. Batrachium 	Akiyama R. et al.Arrigo N. et al.Mandakova T. et al.Mandakova T. et al.Mandakova T. et al.Huynh S. et al.Castro M. et al.Meeus S. et al.Lischer H. et al.Dirihan S. et al.Stobie C. et al.Sutherland B. et al.Chumova Z. et al.Laurent S. et al.Jenkins C. et al.	134 135 135 136 136 137 137 137 138 138 138 139 139 139 140 140 141
 Habitat segregation in an allopolyploid and its parent species in Cardamine Is hybridization impacting the diversification rates of land plant polyploids ? Mesopolyploid evolution in the Australian and New Zealand crucifers Multiple patterns of genome evolution in the polyploid-rich genus Cardamine Multiplex amplicon sequencing for genotyping and phylogenetic inference in polyploid wild wheats Does genome duplication results in reproductive isolation in tetraploid-octoploid complexes? The case study of Gladiolus communis Fertility restoration during polyploid speciation in Mimulus Reference-guided de novo assembly: Improved genome of a non-model plant species Polyploidy, morphology, and systemic fungal endophyte frequencies of Festuca rubra L. in a broad scale geographic distribution Temporal and spatial context of phylogeographic structure in the hexaploid KwaZulu-Natal Yellowfish (Labeobarbus natalensis) Interploid reproductive isolation variation within the Campanula rotundifolia polyploid complex Sweet vernal grass in Europe: The origin of polyploid genomes in one genus Whole genome duplication does not show consistent response in fish and plant lineages fate The role of ploidy in host resistance: An experimental test of triploid and tetraploid snails Terra incognita of contemporary plant biosystematics: Untangling the sources of complexity in Ranunculus subg. Batrachium Deep genetic splits in a diploid-polyploid Arabidopsis arenosa species 	Akiyama R. et al.Arrigo N. et al.Mandakova T. et al.Mandakova T. et al.Mandakova T. et al.Huynh S. et al.Castro M. et al.Meeus S. et al.Lischer H. et al.Dirihan S. et al.Stobie C. et al.Sutherland B. et al.Chumova Z. et al.Laurent S. et al.Jenkins C. et al.Prancl J. et al.	134 135 135 136 136 137 137 138 138 138 139 139 139 140 140 141

Growth differences between diploid and tetraploid cytotypes in a mixed ploidy population of the Patagonian steppe plant Hypochaeris incana	Tanadalaanaa Kastal	1.10
(Asteraceae) Phylogenetic and biogeographical patterns of allopolyploid speciation in an	Tremetsberger K. et al.	142
intertidal fucoid seaweed assemblage Symposium 21. The evolution of phenotypic plasticity within and acro	Neiva J. et al.	143
The evolution of the ability to learn	Verzijden M. et al.	144
The regulation of evolvability through Hsp90 expression	Kurtz J. et al.	144
	Kultz J. et al.	144
The effect of worker mediated environmental stress on colony fitness in common black ant Formica fusca	Fuchs S. et al.	145
Effects of nest microclimate on maternal effects in a small passerine bird Inconsistency of whole genome transcription responses to diet in	Bleu J. et al.	145
Drosophila Trans-generational effects of Diuron herbicide on the methylome of the	Zandveld J. et al.	146
Pacific Oyster Crassostrea gigas Parasite-induced changes in host phenotype and gene expression after	Rondon R. et al.	146
infection	Feldmeyer B. et al.	147
Maternally-derived thyroid hormones in avian eggs: Variation and function	Ruuskanen S. et al.	147
Adaptive Integrative Shape Variations in Phenotypic Plasticity	Nishimura K.	148
Negative public information in mate-choice copying helps the spread of a		
novel trait	Varela S. et al.	148
Memory and learning in gene-regulation networks	Kouvaris K. et al.	149
	Rouvans R. et al.	149
The role of nucleic acid methylating enzymes in the red flour beetle	a	
Tribolium castaneum	Stolte N. et al.	149
Ephemeral vs persistent triploids: Two epigenetic modus operandi	Beauregard F. et al.	150
Life history consequences of dietary mismatches in Drosophila		
melanogaster	Duxbury E. et al.	150
	,,	
Plasticity and evolutionary divergence in ovariole number in Drosophila	Mendes C. et al.	151
Plasticity and evolutionally divergence in ovariole number in Drosophila	Menues C. et al.	101
Phenotypic plasticity and adaptive potential for climate change in mountain		
birch – analysis of mature siblings in tree-line common gardens	Saloniemi I. et al.	151
Reproductive tactics and sperm competition related to oxidative stress in		
the Seba's short tailed bat, Carollia perspicillata	Fasel N. et al.	152
Context-dependent plastic response to the presence of predator cues in a		
	Tóth Z.	150
widespread newt species	TOUT Z.	152
Environment modifies equilibrium proportions of alternative reproductive		
strategies in the bulb mite	Skrzynecka A. et al.	153
Epigenetic modifications in moth sexual communication signals	Lievers R. et al.	153
Seasonality maintains alternative life history phenotypes	Kivelä S. et al.	154
Live fast, die young? - Trans-generational effects of parental food stress in		
a butterfly	Woestmann L. et al.	155
Grandparental immune priming in the sex-role reversed pipefish	Woestmann E. et al.	100
		455
Syngnathus typhle	Beemelmanns A. et al.	155
An evolutionary analysis of dizygotic twinning in humans	Smock R. et al.	156
Genotype and phenotype changes over generations on a multinucleated		
fungus	Mateus Y. et al.	156
Predator-induced plasticity of tadpoles: A search for developmental		
windows	Gollmann G. et al.	157
	Commann Crocan	101
Evolutionary modicing and intrinsically yulgerable focultative adoptations	Nacao D	450
Evolutionary medicine and intrinsically vulnerable facultative adaptations	Nesse R.	158
Annual and seasonal variability in leaf traits of Iris variegata genotypes		
growing in contrasting light conditions	Zivkovic U. et al.	158
Symposium 22. Evolutionary Epigenetics: switching from models to t	he field	
Evolutionary and ecological patterns of global DNA cytosine methylation in		
angiosperm plants	Medrano M. et al.	160
Fine-scale population epigenetic structure in relation to gastrointestinal		100
		400
parasite load in red grouse (Lagopus lagopus scotica)	Wenzel M. et al.	160
Epigenetic signatures of parental effects in soil mites	Piertney S. et al.	161
Contribution of epigenetic mechanisms to phenotypic plasticity in		
Neurospora crassa	Kronholm I. et al.	161
DNA methylation patterns, CpG o/e ratio and Non-Gaussian distributions: A		
pan-species study	Aliaga B. et al.	162
pan opolioo daay	, maga D. et al.	102

Epigenetic origin of adaptive phonotypic variants in the blood fluke		
Epigenetic origin of adaptive phenotypic variants in the blood-fluke Schistosoma mansoni	Grunau C. et al.	162
Impact of coastal pollution on epigenetics and reproductive fitness of	Stunda O. ot al.	102
marine snail Hexaplex trunculus	Šrut M. et al.	163
Epigenetic variation and selection by aphids in Arabidopsis thaliana	Kropivsek K. et al.	163
Facing environmental predictability with different sources of epigenetic		
variation	Leung C. et al.	164
Heritable methylation patterns in widespread apomictic dandelions	Preite V.	164
Social and dietary stress and its implications on the life-history traits in wild		
rodents (bank vole – Myodes glareolus) through epigenetic changes	van Cann J. et al.	165
Epigenetics in forest trees - Do methylation patterns in conifers change with		
environmental conditions?	Heer K. et al.	165
Plasticity and epigenetics between native and invasive Phragmites lineages,	Deheumikeft // et el	400
between genotypes, and within genotypes	Dohovnikoff V. et al. Varriale A.	166 166
DNA Methylation, Epigenetics, and Evolution in Vertebrates Symposium 23. Emerging 'models' in evolutionary and ecological neu		100
Adaptations in the brains of Neotropical butterflies	Montgomery S. et al.	167
Large brains enhance female, but not male survival in the guppy	Kotrschal A. et al.	167
A mathematical model for brain development	González-Forero M. et al.	168
Genetic mechanisms of caste differentiation in response to stress imposed		
by dominant female breeders of naked mole rats	Qiu B. et al.	168
Vomeronasal receptor families in the deer mouse Peromyscus maniculatus:		
Towards an evolutionary analysis	Lassance J. et al.	169
Symposium 24. Evolution of behavioural variation		
Bloodmeal size defines ejaculate production and impacts on male mating		
behaviour in bedbugs	Otti O. et al.	170
Parental roles, offspring fitness and gene expression under flexible	Darker D. et al	170
parenting strategies Evolution of communication in socially polymorphic halictid bees	Parker D. et al.	170 171
Predicting individual behaviour of wild crickets from lab measures of	Wittwer B. et al.	171
personality?	Fisher D. et al.	171
Associations between personality and life-history traits differ across blue tit		17.1
populations	Dubuc Messier G. et al.	172
Brain size affects the predator response of female guppies (Poecilia		
reticulata)	van der Bijl W. et al.	172
Allelic variation at TrpA1 and trpl regulates thermal-mediated behavior in		
the lab and field in Drosophila	Schmidt P. et al.	173
Variation of absorption spectrum and gene expression pattern of red opsins		
under different light environments and its effect on behavioral spectral	• · · · · ·	
sensitivity in guppies, Poecilia reticulata	Sakai Y. et al.	173
Image analysis of weaverbird nests reveals signature weave patterns	Ihalainen E. et al.	174
Effects of colony genotype composition on a single brain methylome I am too old for this: Ageing great tits (Parus major) innovate less and	Riba O. et al.	174
persist less at a problem–solving task	Poujai M.	175
Genetic underpinning of a major evolutionary trait: Eusociality in the		175
facultative eusocial sweat bee Halictus rubicundus	Soro A. et al.	176
Social effects on parental care in the cooperatively breeding Seychelles		
warbler	Dugdale H. et al.	176
Are dispersing and non-dispersing individuals on different life paths?		
Looking at telomere lengths in the Collared flycatcher	Recapet C. et al.	177
The role of the aggression neuropeptide tachykinin in caste differentiation of		
ants	Howe J. et al.	177
Inbreeding impacts reproductive success but not sperm performance in wild		
male song sparrows	Losdat S. et al.	178
Plasticity of aggression: The effects of current and past predation risk,		470
social environment and sex	Herczeg G. et al.	178
The effect of brain size on mate choice and mating competition in guppies	Corral-Lonoz A at al	170
artificially selected for relative brain size The evolution of "good parent" signals in birds: A meta-analysis	Corral-Lopez A. et al. Hegyi G. et al.	179 180
Spider aggression reflects within-group conflict, not group adaptation	Biernaskie J. et al.	180
Personality-related survival and sampling bias in wild cricket nymphs	Niemela P. et al.	181
Peas in a pod: Nestling activity is influenced by social interactions and state		
but not social hierarchy	Winney I. et al.	181
	,	-

Parent-offspring co-adaptation: Generating between-family variation in behavioural reaction norms for parental provisioning and offspring begging?	Korsten P. et al.	182
Colony composition, division of labor and fitness in clonal ant societies	Ulrich Y. et al.	182
Evolution of behaviors in response to chronic malnutrition in Drosophila		
melanogaster	Vijendravarma R. et al.	183
Genetic basis for seasonal and circadian adaptation in Nasonia vitripennis Breeding a hybrid line to overcome selection limits for voluntary wheel	Dalla Benetta E. et al.	183
running in mice	Hiramatsu L. et al.	184
Genetic basis of variation in circadian rhythms in moth sexual communication	Groot A. et al.	184
The evolution of technical innovation in primates	Navarrete A. et al.	185
Analysis of prezygotic isolation between Robertsonian and standard house		
mouse (Mus musculus domesticus) in Tunisia	Said K. et al.	185
Symposium 25. Groups versus individuals: levels of selection in micr	obial systems	
Large variations in HIV-1 viral load explained by shifting-mosaic metapopulation dynamics	Lythrook ot al	186
Antiviral drug resistance as an adaptive process: A survey	Lythgoe K. et al. Irwin K. et al.	186
A novel classification for genetic elements in prokaryotic vehicles: Inter-	II WIII R. et al.	100
cellular mobility, symbiotic relationships, cell-level phenotypes and the		
levels of selection	Jalasvuor M.	187
Are the effects of coevolution with a host equal for each parasite in a clonal		107
population?	Klösener M. et al.	187
Evolutionary conflicts between Staphylococcus aureus during transmission		
and infection	Wilson D. et al.	188
Choose your partner carefully: Variation in aphid phenotypes when multiple bacterial symbionts coexist	Smee M. et al.	188
Embryo genetics affects composition of host-associated bacteria in brown		
trout (Salmo trutta)	Wilkins L. et al.	189
Population genomics of the symbiotic fungus Rhizophagus irregularis suggests intercontinental dispersal	Savary R. et al.	189
	Savary IX. et al.	109
Symposium 26. Real-time bacterial evolution in vivo and in vitro	Savary IX. et al.	109
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of		
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa	Barbosa C. et al.	190
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of	Barbosa C. et al.	190
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant		
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic	Barbosa C. et al. Jansen G. et al.	190
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen	Barbosa C. et al.	190 190
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic	Barbosa C. et al. Jansen G. et al. Granato E. et al.	190 190 191
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen	Barbosa C. et al. Jansen G. et al. Granato E. et al.	190 190 191
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR Tuberculosis	Barbosa C. et al. Jansen G. et al. Granato E. et al.	190 190 191
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J.	190 190 191 191
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasReversibility in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J.	190 190 191 191
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa Relationship between siderophore availability and virulence in	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al.	190 190 191 191 192 192
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasReversibility in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosa	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al.	190 190 191 191 191
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa Relationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al.	190 190 191 191 192 192 193
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogen	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Mikonranta L. et al.	190 190 191 191 192 192 193 193
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al.	190 190 191 191 192 192 193
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasRevensibility in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al.	190 190 191 191 192 192 193 193 193 194
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosa	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Mikonranta L. et al.	190 190 191 191 192 192 193 193
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosaEvolution of S. aureus during nasal carriage involves cross-lineage transfer	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al. Toll Riera M. et al.	190 190 191 191 192 192 193 193 193 194 194
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosaEvolution of S. aureus during nasal carriage involves cross-lineage transfer of mobile genetic elements	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al.	190 190 191 191 192 192 193 193 193 194
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosaEvolution of S. aureus during nasal carriage involves cross-lineage transfer	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al. Toll Riera M. et al.	190 190 191 191 192 192 193 193 193 194 194
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosaEvolution of S. aureus during nasal carriage involves cross-lineage transfer of mobile genetic elements The genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25Do antibiotic resistance alleles affect adaptation to phages?	 Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Wikonranta L. et al. Harmand N. et al. Toll Riera M. et al. Golubchik T. et al. 	190 190 191 191 192 192 193 193 193 194 194 194
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR Tuberculosis Reversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa Relationship between siderophore availability and virulence in Pseudomonas aeruginosa Within-host evolution decreases virulence in an opportunistic bacterial pathogen Antibiotic dose specialization in bacterial experimental evolution The genemic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosa Evolution of S. aureus during nasal carriage involves cross-lineage transfer of mobile genetic elements The genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25 Do antibiotic resistance alleles affect adaptation to phages? Molecular basis of drug resistance-related fitness costs in Mycobacterium	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Wikonranta L. et al. Harmand N. et al. Toll Riera M. et al. Ferguson G. et al. Arias Sanchez F.	190 190 191 191 192 192 193 193 193 194 194 194 194 195 195 195
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR Tuberculosis Reversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa Relationship between siderophore availability and virulence in Pseudomonas aeruginosa Within-host evolution decreases virulence in an opportunistic bacterial pathogen Antibiotic dose specialization in bacterial experimental evolution The genetic elements The genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25 Do antibiotic resistance alleles affect adaptation to phages? Molecular basis of drug resistance-related fitness costs in Mycobacterium tuberculosis	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al. Toll Riera M. et al. Golubchik T. et al. Ferguson G. et al. Arias Sanchez F. Gygli S. et al.	190 190 191 191 192 192 192 193 193 193 194 194 194 194 195 195 195 196
Symposium 26. Real-time bacterial evolution in vivo and in vitroThe role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosaGenomic coevolution of natural phage communities with antibiotic resistant PseudomonasKilling in a team - Cooperation and virulence evolution in an opportunistic pathogenQuantifying transmission fitness cost of MDR TuberculosisReversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosaRelationship between siderophore availability and virulence in Pseudomonas aeruginosaWithin-host evolution decreases virulence in an opportunistic bacterial pathogenAntibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosaEvolution of S. aureus during nasal carriage involves cross-lineage transfer of mobile genetic elementsThe genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25Do antibiotic resistance alleles affect adaptation to phages? Molecular basis of drug resistance-related fitness costs in Mycobacterium tuberculosis	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al. Toll Riera M. et al. Golubchik T. et al. Ferguson G. et al. Arias Sanchez F. Gygli S. et al. Richards H. et al.	190 190 191 191 192 192 193 193 193 194 194 194 195 195 195 196 196 197
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR Tuberculosis Reversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa Relationship between siderophore availability and virulence in Pseudomonas aeruginosa Within-host evolution decreases virulence in an opportunistic bacterial pathogen Antibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosa Evolution of S. aureus during nasal carriage involves cross-lineage transfer of mobile genetic elements The genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25 Do antibiotic resistance alleles affect adaptation to phages? Molecular basis of drug resistance-related fitness costs in Mycobacterium tuberculosis Testing Discrepancies in Mutation Rate Estimations Evolution of commensal bacteria through experimental transmission	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al. Toll Riera M. et al. Golubchik T. et al. Ferguson G. et al. Arias Sanchez F. Gygli S. et al.	190 190 191 191 192 192 192 193 193 193 194 194 194 194 195 195 195 196
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR Tuberculosis Reversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa Relationship between siderophore availability and virulence in Pseudomonas aeruginosa Within-host evolution decreases virulence in an opportunistic bacterial pathogen Antibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosa Evolution of S. aureus during nasal carriage involves cross-lineage transfer of mobile genetic elements The genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25 Do antibiotic resistance alleles affect adaptation to phages? Molecular basis of drug resistance-related fitness costs in Mycobacterium tuberculosis Testing Discrepancies in Mutation Rate Estimations Evolution of commensal bacteria through experimental transmission	 Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Wikonranta L. et al. Harmand N. et al. Toll Riera M. et al. Golubchik T. et al. Ferguson G. et al. Arias Sanchez F. Gygli S. et al. Richards H. et al. Diaz A. et al. 	190 190 191 191 192 192 193 193 193 194 194 194 194 195 195 196 196 197 197
Symposium 26. Real-time bacterial evolution in vivo and in vitro The role of drug interactions and collateral effects in the evolution of antibiotic resistance in Pseudomonas aeruginosa Genomic coevolution of natural phage communities with antibiotic resistant Pseudomonas Killing in a team - Cooperation and virulence evolution in an opportunistic pathogen Quantifying transmission fitness cost of MDR Tuberculosis Reversibility of phage-induced loss of conjugation among drug-resistant bacteria depends on the type of evolutionarily rescuing mutation Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa Relationship between siderophore availability and virulence in Pseudomonas aeruginosa Within-host evolution decreases virulence in an opportunistic bacterial pathogen Antibiotic dose specialization in bacterial experimental evolution The genomic architecture of metabolic evolutionary innovation in Pseudomonas aeruginosa Evolution of S. aureus during nasal carriage involves cross-lineage transfer of mobile genetic elements The genetic basis of phenotypic switching in Pseudomonas fluorescens SBW25 Do antibiotic resistance alleles affect adaptation to phages? Molecular basis of drug resistance-related fitness costs in Mycobacterium tuberculosis Testing Discrepancies in Mutation Rate Estimations Evolution of commensal bacteria through experimental transmission	Barbosa C. et al. Jansen G. et al. Granato E. et al. Pecerska J. Ojala V. et al. San Millan A. et al. Weigert M. et al. Weigert M. et al. Mikonranta L. et al. Harmand N. et al. Toll Riera M. et al. Golubchik T. et al. Ferguson G. et al. Arias Sanchez F. Gygli S. et al. Richards H. et al.	190 190 191 191 192 192 193 193 193 194 194 194 195 195 195 196 196 197

Photonic Crystals Cause Active Colour Change in Chameleons	Milinkovitch M. et al.	199
How does the ocellated lizard (Timon lepidus) develop its color pattern? Not just a colour shift: Insect melanism and fecundity	Montandon S. et al. Välimäki P. et al.	200 200
Understanding the demography of divergence and the genetics of adaptation in White Sands lizards	Laurent S. et al.	201
Differential regulation of melanin-related genes contributes to plumage coloration differences between morphs of the dark-eyed junco: A common-		
garden experiment	Kornobis E. et al.	202

Our sponsors

UNIL | Université de Lausanne

	Kontaktgruppe für Forschungsfragen (KGF)		
EI - BASF	syngenta NOVARTIS	Roche	

FONDS NATIONAL SUISSE Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

UNIL | Université de Lausanne

THE ROYAL SOCIETY

FONDATION POUR L'UNIVERSITÉ DE LAUSANNE